0.1 Statistical Models for Analysing Route-Finding Tasks

When designing the format of the empirical experiment, we had to consider
the method by which we were to analyse the data afterwards. Three options
presented themselves as to how the data could be collected and analysed:

1. Group the subjects into three groups and only present questions involving
one variant of each map to each group. For example, group A would
only see the geographical maps, group B would see the official published
maps and group C would see the automatically-drawn maps. This has
the advantage that a simple between-subjects analysis using analysis of
variance (ANOVA) could be used.

2. Do not group any subjects but present all three map variants for each
question to each subject. This would have allowed a within-subjects anal-
ysis of the data using either ANOVA or a t-test. However, this method
would have required asking the same question three times to each subject
(once for each map variant). The possible effect of subjects remember-
ing the maps, questions and answers might have significantly skewed the
results and could not be ignored.

3. Group the subjects into three groups and, for each question, present a
different variant of each map to each group. This is effectively the same
as a combined between- and within-subjects design and was the method
that we used for our study. This method has the advantage that any
learning of the maps and questions is minimised and should produce more
meaningful results. However, the analysis of the data is more complex
since each subject responded more than one task. Hence, in this case
it is required the use of models capable to distinguish across strata and
clusters, in a broad sense.

We decided that the most appropriate method for analysis was the third one
and we are able to analyze the results using time-to-event (commonly named
duration or survival) models. The variable of relevance would be the time for
a person to complete the task of finding a correct metro route using one of the
three different maps. In particular, we study the duration time to complete the
task using proportional hazard models to distinguish stratification effects for
using one of the three drew maps considering the effects of metro locations. We
also used frailty models to measure random effect across individuals, since our
data consists of more than one sample for each individual. Hence, the effect
on the time duration to define a correct metro routes using different drawing
system would be measured via its correspondent factor effect. Since the variable
of relevance is the duration to complete the task correctly, incorrect answers are
also considered in the analysis by treating them as right censored data.

0.2 Frailty Models

We used frailty models (introduced by Clayton and Cuzick ???) which are a
generalisation of Cox’s proportional hazards model ?7??. Survival models 7 are
more often used for analysing the survival of biological organisms or the failure
of mechanical systems, however their use extends to the study of duration data



as well. The idea of survival analysis is to study time-to-event data (for example
the survival time or the time taken to complete a task). For our experimental
data we are modelling the duration time taken by an individual to find a correct
metro station reading a map, T, that is taken to answer a question.

Typically, survival models are used to analyse the results of subjects under-
going some form of time-to-event test. Each subject in the study contributes
to learn about the survival function of a certain underlying population which
characterizes the time-to-event to complete a certain task or to get a specific
test result. As we mentioned before, proportional hazard models are used to
differentiate the effect of different stratification factors in the underlying sur-
vival function. Those effects multiplicatively affect the underlying law driven
the duration. In our study, those factors are defined via dummy variables. The
frailty component extends the proportional hazard model by the inclusion of
an additional multiplicative random effect to study clustering patterns across
observations. In our study, observation are clustered by individuals.

During the study, there were some individuals who did not respond correctly
the task of finding the correct answer or responded an incorrect answer. We
assumed that all these cases would eventually be answered correctly. Therefore,
those cases were considered as truncated (right censored) duration times to get
the right answer. In that way the information contained in all the observation
of the sample is incorporated in the analysis.

The mathematical description of survival models with proportional hazards
and frailties is as follows. Let T be the duration time to complete a task cor-
rectly. Let assume that 7" is a random variable having a cumulative distribution
function

P(t)y=Pr(T <t) (1)
and probability density function

p(t) = S P(T). )

The survival function is defined as complement of P, i.e.,

Sty = 1-P(t)
= Pr(T >1t). (3)

In other words, the survival function S(t) gives the probability that someone
would have to expend more time than ¢ to complete the task given that at time
t he/she did not complete it. The time that a question is answered can also
be represented by the hazard function, h(t), which gives the instantaneous rate
of failure at time ¢ on condition that something survives until at least t. The
hazard function is defined by
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Equivalently, the density function is completely defined in term of its corre-
sponding hazard and survival function via p(t) = h(t)S(t).



As we mentioned before, proportional hazard models with frailties incorpo-
rate multiplicative effects given for stratified and clustered observations. Its
analytic expression is defined by

h(tij | @ij, vi) = ho (ti;) exp (2;8) v; (5)

where 7 indexes the group of individuals, j indexes individuals, x;; is a p-
dimensional covariate vector for stratification, 3 is a p-dimensional unknown
parameter vector, hg is the baseline hazard function, common to all individuals
in the study, and v; is a multiplicative random effect for each cluster, i.e. the v’s
are independent random variables with common distribution functions. In our
model, x;; is defined as a vector containing seven dichotomous variables. Two
ment to evaluate the effect of using the published and automatic metro map
drawn and the rest to measure the effect across metro locations. The multi-
plicative variable is usually reparameterised as 6; = logv;. Whence 6; can then
be artificially incorporated in the linear proportional hazard, as follows

h (tij | Jﬁij,’l)i) = hO (tw) exp (w;]ﬂ + 91) ) (6)
with
6
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where 1¢g denotes an indicator variable for the characteristic Q). A key feature
of the model used is that hg has no analytical form, i.e. it is defined nonpara-
metrically. Hence, it is determinated only by the observed data.

Considering a set of data, one learn from the model (6) via its corresponding
likelihood functions. Is in that function where the censoring process of the data
comes into the analysis. Lets define a latent variable d;; defined to be equal to
1 if the ijth duration time correspond to a correct answer and 0 otherwise. The
likelihood function, L, is defined by

L = I ) I Scs) (8)
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Here, the parameters to be estimated are hg, § and v’s. We fitted the model
using the Bayesian framework, considering that hg is approximated by a B-spline
and that all the v’s have a Gamma distribution function. In particular we used
the package survBayes in R (include references), working with the standard
prior specification considered therein.

0.2.1 Contrast of map type effects

The idea of including frailties and other stratification variables in the model
aims at differentiate effects attributable to the map type only without being
perturbed by those factors. Working with the Map Type effect, we have consid-
ered to keep the geographic map as reference including only two dichotonomous
variables for the published and automatic metro map, respectively. It is impor-
tant to notice that these effects are invariant to any similar specification.



That effect is measured in terms of the ratio of hazard functions. For in-
stance, the effect of using the published map vs the geographic map, given all
the rest components, is given by

Gy = ) a0

Similarly, the effect of using the automatic drawn map vs the geographic one is
given by
h(t|A,v,...)
h(t|G,v,...)

Working in terms of our hypothesis, we can define that the Map Type A is
more efficient than Map Type P if it is more probable to expend less time to
find a given route using map A than using map P. In probabilistic terms, our
hypothesis requires

= exp(fa). (11)

Pr(T < t]4) > P(T < 4|P), (12)
for all ¢, i.e. Ps(t) > Pp(t). That is equivalent to

Sa(t) < Se(t), (13)

for all ¢. Considering that all the remaining components are given, the above
condition reduces to
So(t)exp(ﬁA) S So(t)EXP(ﬁP)’ (14)

which is equivalent to

Bp < Ba, (15)

since Sp(t) is bounded at (0, 1) for all ¢.

To conclude, in a Bayesian framework, we can compute the probability of
our hypothesis given the observed data. We would say that there is enough
evidence in favor of our hypothesis if that probability is greater or equal than
0.5. Recall that the parameters Sp and 84 are assumed random. Therefore, an
equivalent rule to validate our hypothesis might be given by

Pr(8p < Baldata) > 0.5. (16)
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