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Multivariate Generalizations of the Proportional Hazards Model 

By DAVID CLAYTONI- and JACK CUZICK 

Leicester University, UK Imperial Cancer Research Fund Labs, 
London, UK 

[Read before the Royal Statistical Society on Wednesday February 13th, 1985, at a meeting 
organized by the Medical Section, the President, Dr W .  F .  Bodmer, in the Chair] 

SUMMARY 
A model for bivariate life-tables is considered with a single association parameter 
which is unaffected by monotone transformation of the marginal distributions. 
Methods for testing and estimating this parameter from right-censored sample pairs 
using only rank-order information are presented. The model is a generalization of the 
proportional hazards model and includes a random effect representing heterogeneity 
of "frailty" or proneness to failure. These methods are extended to allow for co- 
variates and adapted to study the problem of intra-class association. The analysis of 
litter-matched and matched-pair failure-time data is discussed. Some uses of the 
methods in rank regression problems involving only one right-censored dependent 
variable are described and a test is proposed for proportional hazards against alter- 
native error structures leading to converging hazards. Finally the methods are com- 
pared and validated by MonteCarlo simulations. 

Keywords: PROPORTIONAL HAZARDS; CENSORED DATA; BIVARIATE LIFE TABLE; 
NONPARAMETRIC ESTIMATION; MATCHED PAIRS; ASSOCIATION PARAMETER; 
INTRACLASS ASSOCIATION; SIBSHIP MODELS 

1. INTRODUCTION 
In the past decade there has been great interest and substantial advancement in the study of 
survival times for which only incomplete "censored" observations may be available. Particular 
attention has been given to developing non-parametric methods which permit comparison of 
survival curves in the presence of right cens&ng without the need to specify a detailed para- 
metric form for the survival distributions. A concept fundamental to this approach is the pro- 
portional hazards model which was first applied in the two-sample problem (hlantel, 1966), and 
later was clearly formulated for the general regression problem by Cox (1972). Much of this early 
work was motivated by problems in the analysis of clinical trials and the development of methods 
for the two-sample, k-sample, and regression problems reflect these needs. The proportional 
hazards model is also of central importance in epidemiology, and is the concept underlying the 
"indirect" standardization of mortality and incidence rates, where a piecewise exponential model 
is implicitly assumed (Clayton, 1982). A similar concept is employed in the logistic regression 
analysis of case-control studies, but the basic hazard function is no longer available (Prentice and 
Breslow. 1978). 

The success of these semi-parametric models in assessing treatment differences, prognostic 
factors and risk factors has stimulated an interest in the analysis of more detailed aspects of life 
histories. For example, one may wish to  study the bivariate distribution of two time variables, or 
to include the tune at which one event occurs in a regression analysis of some other life event. 
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Alternatively, the very occurrence of one life event might directly affect the hazard for another 
type of event. 

A general framework for modelling life histories in terms of counting processes can be found in 
the work of Aalen et al. (1980). Our approach will be less general and will focus upon models for 
association in bivariate (and multivariate) survival distributions, and on the extension of regression 
models to  allow for such association. We shall be concerned with association arising from heter- 
ogeneity of proneness, or "frailty", of individuals within a studied population rather than from 
that arising from direct effects of one life event upon another (the latter problem is discussed by 
Leurgans, Tsai, and Crowley, 1982). Finally we develop an extension of the proportional hazards 
regression model which incorporates both fixed and random terms. 

Our motivation for studying these problems arose from analytical difficulties in clinical trials 
and epidemiological studies. For example, in cancer trials if is of interest to know if the interval 
from remission to relapse influences the subsequent interval from relapse to death. In heart disease 
epidemiology, the age of death from (or first attack of) heart disease in father-son pairs form a 
bivariate life distribution, with observations possibly doubly censored by, for example, mortality 
from other causes. Studies of breast cancer incidence in sisters provide the censored data analogue 
of the intra-class correlation problem. Again in cohort studies of breast cancer, two important 
covariates, viz. age at first pregnancy and age at menopause, will often be censored. 

The next section describes a class of bivariate distributions characterized by an association 
parameter, but with arbitrary marginal distributions. The bivariate distribution is completely 
specified by this parameter and the two marginal distribution functions. We believe that this 
model is of interest even in the uncensored case and is applicable to bivariate problems other than 
those involvi~~g survival times. The next section reviews previous approaches to the problems of 
estimation and testing for this model, and the remaining sections deal with our current work. 
Section 4 develops the estimation theory for the case where there is no relationship between the 
marginal distributions of the two coordinates-we shall deal with the uncensored case in some 
detail and indicate the (minor) modifications necessary to deal with censoring. Section 5 extends 
this theory to allow for regression modelling of covariate effects. Finally, in Section 6 we examine 
what further information can be extracted by a non-parametric method when the two coordinates 
have the same (arbitrary) marginal distribution. This naturally generalizes to the case of several 
coordinates and allows the analysis of litter-matched experiments. A special case is the matched- 
pair survival data problem which has been the subject of some recent work, but which still awaits 
a fully satisfactory solution. 

2. THE MODEL 
We consider first the situation in which two time variables with unspecified marginal 

distributions are related by a single association parameter. Our goal is to construct the appropriate 
generalization of the classical proportional hazards model for this problem. As in the classical two- 
sample problem, the problem may be approached either as being concerned with the distribution 
of times, or as a contingency table problem concerned with the occurrence or non-occurrence of 
events. 

We begin with the former approach. A natural model is to assume that each survival time is 
related to the same unobserved covariate by a proportional hazards model. If (TI ,  T,) denotes 
the bivariate survival time with hazard function (Al (t), h2(t)) and w denotes the unobserved co-
variate we assume that 

hk(tI W) = h t ( t ) e x p ( a k ~ ) ,  k = 1 , 2 ,  

where hk(t I W) are the conditional hazard functions, hi(t) are unknown baseline hazard rates and 

hk( t )=E[hk( t IW)] ,  k = 1 , 2 ,  

are the expectations over w of the conditional hazard function. Of course, complete specification 
of the model requires a distribution function for a. 
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This approach may also be formulated in terms of linear models and, as Prentice (1978) has 

pointed out for the univariate case, the monotone transformation 

sk= log A:(T~) 

applied to (TI,  T2) where 

yields the linear functional relationship 

where (el ,  e2 )  are independent random variables with (minus) extreme value distributions i.e. 

Pr (e >x) = exp (- exp (x)). 

Notice that each coordinate has been transformed by its own monotone transformation in this 
setup. Later we shall consider situations, such as matched pairs or litters, in which the co-
ordinates are indistinguishable and this would be reflected by setting 

A: (t) = X: (t) and a = a 2  

so that the same transformation applied to both coordinates yields the linear model (2.1). 
This linear model approach was used by Cuzick (1982) and by Wu (1982). The interpretation 

in terms of random shared relative risks was explored by Clayton (1978) who also investigated an 
approach based upon the limiting properties of contingency tables with a certain constant odds 
property. This was motivated by Mantel's treatment of the classical two-sample problem in which 
the proportional hazards model is the continuous time limit of a conditional logistic model in 
which the ratio of the odds of failure between groups remains constant over trials. Symbolically, 
if Pii denotes the relative frequency of failure at trial i for subjects in group j in this two sample 
problem, the model is 

Pill 	 C P k l
k > i  

8 = 	 ------- - for all i. 
Pi21 Pk2 ' 

k > i  

In the contingency table literature this model is known as the "continuation ratio" model (Fien- 
berg, 1980; McCullagh and Nelder, 1983). 

When we are interested in association between two discrete failure time variables then a natural 
analogue of this model suggests itself. If Pii now represents the relative frequency of failure of 
both components at trials i and j respectively, then the generalized continuation ratio model would 
require the constant odds ratio property 

The continuous time version of this'model is 'obtained by grouping the time axes into discrete 
epochs and taking the limit as the durations of epochs approach zero. Assume (TI ,  T2) have a 
joint density and let F(tl ,t 2 )  = Pr(Tl > t l  , T2 > t 2 )  be the bivariate survivor function. Using the 
notation 
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then the bivariate generalization of the proportional hazard model is 

0 =  -F F12 , for all t l  and t 2 .  
F1F2 

T h s  has an interpretation in terms of conditional hazard functions, namely 

hl(t1 I T2 = t 2 ) = 0  hl(t1 17'2 > t 2 )  

where hl (tl I .) is the hazard function for T1 conditional upon T2 ;a similar relationship holds for 
the hazard of T2 conditional upon TI.  A further representation of the model is in terms of what 
we shall call the mortality potential 

H(t1, t2) = -1% F(t1, tz), 

in the sense that its differentiation yields (conditional) hazards or "force of mortality" functions. 
For example, differentiation with respect to t l  yields 

Hi = hi (ti I T2 > t2) 

with a similar result for H z .  Written in terms of the mortality potential (which is simply a bivariate 
generalization of the integrated hazard or accumulated risk) our model becomes 

H12 = - y H 1  H z ,  7 2 0  (2.2) 

where y = 0 - 1. For simplicity (and without loss of generality up to monotone transformations) 
we will take T1 and T2 to be non-negative random variables. The following theorem shows that 
(2.2) determines the joint distribution of (TI ,  T2) up to monotone transformations of the 
marginal distributions. 

Theorem 1. Assume H(tl ,  t 2 )  is twice continuously differentiable, H(0, 0) = 0 and let 

A1(t) = H(t ,O), A2 (t) = H(Oj t) (2.3) 

be the marginal cumulative hazard functions for T1 and T2 respectively. Then the unique solution 
of (2.2) subject to the boundary condition (2.3) is 

H(t1, t2) = Y-I log{exp (~Al ( t1 ) )+exp(yA2(t2))- 11, -Y> 0 

= Al(t1) + Az(t2), y = 0. 

The proof is given in Appendix 1. 
As we are interested in nonparametric properties of the distribution we are free to choose the 

marginals at will. The choice Al(t) = A2(t) = t yields unit exponential marginals and will be 
treated in detail below. We record that it has a bivariate survivor function 

F ( f 1 , t z ; ~ ) = { e x p(yt , )+exp(ytz)- 11-'17 

and joint density 

F12  (tl 3 t2; 7) 'N l ,  t2 ;Y) 

(1 + Y)exp{y(t1 -. --- --. . -.--+ t 2 ) 1  -
{exp (ytl)  + exp(yt2)- 1)(2+117) 

where t l  > 0, t 2  >0 and y >0. 
This model gives independent coordinates when y = 0 and maximally dependent coordinates 

as y +co. It does not permit negative association: i.e. negative values of y are not permitted. 
Happily, the conflict between the two generalizations of the proportional hazards model has a 
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satisfactory resolution. If the two error variables (el ,  e2)  in (2.1) have (minus) extreme value 
distributions and it is assumed that the common covariate, w,  has a (minus) log gamma distri- 
bution (i.e. e-* is a gamma variate with shape and scale parameter both equal to y-' so that its 
mean is 1 and its variance is y), and we set a l  = a 2  = 1,  then the bivariate distribution of (TI ,  T2) 
in (2.1) agrees with that in (2.4) up to (separate) monotone transformation of each coordinate. 

We remark in passing that, with the above assumptions concerning the random covariate w ,  
(TI ,  T2) in (2.1) have Pareto marginal distributions. This distribution is an example of a model 
for heterogeneity of hazard within a population. Such models have been studied by a number of 
authors including Vaupel et al. (1979) who introduced the term "frailties" for the multiplicative 
effects, e-*. Hougaard (1984) gives some general results for heterogeneous frailty models and 
shows that the most tractable possibilities are gamma frailty models (to which class the models 
discussed here belong) and inverse-Gaussian frailty models. Hougaard also discusses the use of 
these models for the bivariate distribution of two latent failure times in the competing risk pro- 
blem (Prentice et al., 1978), a problem allied to that considered here. 

We also remark that the model (2.1) may be generalized to include known covariates, z l  and 
z2 say, in addition to the random covariate w. Thus, conditional upon the unknown frailty, the 
effects of the fixed covariates may be represented in terms of the proportional hazard model. 
Unconditionally, however, the proportional hazards model no longer holds. In the two-sample 
problem, for example, the heterogeneity of frailty results in a decreasing ratio of marginal 
hazards with increasing survival time. Even in the univariate case, heterogeneous frailty models 
provide a useful alternative to the proportional hazards model; an application of these models 
to describe distributions of durations of unemployment is given by Lancaster and Nickell (1980). 
Further research along these lines is described in Heckrnan and Singer (1984) and Ridder and 
Verbakel(1983). 

3. PREVIOUS APPROACHES TO INFERENCE 
When the marginal cumulative hazard functions (2.3) are known parametric functions, 

Al(t;crl, y) and A2(t; cr2, y) say, then the inference problem is straightforwrid, with three 
groups of parameters a l ,  cr2 and y. Clayton (1978) gave the log likelihood funci~on for (doubly) 
censored data, and suggested bivariate extensions of the, Weibull distribution ar  J of the piecewise 
exponential distribution, again using gamma frailty assumptions. This derivatiun of the likelihood 
implicitly assumed type I censoring of each time variable and, although the same likelihood will 
certainly supply a sound basis for inference under less restrictive assumptions about the censoring 
mechanism, these conditions remain to be determined. 

The specification of exponential or Weibull forms for the conditional distributions as suggested 
by Clayton (1978) leads to models in which the marginal distributions are Pareto or generalized 
Pareto distributions. The characterization described in the last section in which the marginal 
distributions are exponential was introduced by Oakes (1982), who discussed maximum likelihood 
estimation in the uncensored case. In this characterization the marginal integrated hazard 
functions are 

and the association parameter, y, forms the third parameter of the model. Writing ( x f  ,x;) for the 
ith observation of ( ~ f ,  we note that the score test for association is given by the first T;), 
derivative of the log-likelihood with respect to y at y = 0 i.e. by 

which in this case, and more generally, may be written 
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N 

1 ( ~ l ( x f ) -  1 ) ( ~ 2 ( x i ) -  1) .  
i =  1 

In the presence of censoring, 

xf =min(Tf  , C f ) ,  X: = m i n ( T i , c & ) ,  

where ( c f  ,c!) are potential censoring times. We must carry with X; censoring indicators DL tak-
ing the value 0 for a censored observation and 1 for an uncensored observation. At least for type 
I censoring, it may be easily shown that the score test for association with known marginal distri- 
butions is given by (3.1) with - 1 replaced by -DL, i.e. by 

N 

2 { ~ l ( x f ) - ~ f ) { ~ z ( ~ : ) - ~ : } .  (3.2) 
i =  1 


Other work on this model has concentrated upon a semi-parametric approach in order to  eliminate 
the need for parametric modelling of the marginal distributions. A natural approach is to base 
inference upon the marginal likelihood calculated from the joint probability of the two rank 
vectors. Oakes (1982) investigated this approach in the uncensored case, but was able to obtain 
an explicit expression for the marginal likelihood only for values of N up to 3. Nevertheless, local 
approximations to the marginal likelihood have proved useful in deriving non-parametric tests for 
association. Cuzick (1982) and Wu (1982) investigated association tests for doubly censored data 
using the linear model (2.1). Working independently, both authors used a generalization of the 
marginal likelihood of ranks which was proposed by Kalbfleisch and Prentice (1973) and explored 
in relation to censored rank tests in the univariate case by Prentice (1978). We shall describe this 
likelihood formally in the next section, but here remark that it is a true marginal likelihood only 
for progressive type I1 censoring (Crowley, 1974). Cuzick and Wu showed that the form of the 
score test for no association (y = 0) is determined by the distribution functions for the errors 
(el ,  EZ) ,  and is independent of the distribution of the unobserved covariate, w. For our model, the 
errors are (minus) extreme va!ue variates and, in the uncensored case, the score test is given by 
(3.1) with Al(Xi) and A2(X:) (which are transformations of {Xi ), {xi)to unit exponential 
variates) replaced by the expected order statistics from these (unit exponential) distributions 
corresponding to the ranks of the (Xi  } and ( X i  }. The subtraction of 1 from these values corrects 
the scores to zero mean and yields what, following the work of Savage (1956), are known as 
"Savage scores". 

In the censored case, this approach leads to a score test of the same form as (3.2), but with 
& ( x i )  replaced by corresponding estimates of the marginal cumulative hazards calculated from 
the censored observations by the method of Altshuler (1970) and Nelson (1969). Again, these 
values may be regarded as the expected exponential order statistics corresponding to the 
generalized ranks of the X i ,  but under a progressive type I1 censoring scheme. The subtraction 
of DL corrects the scores to zero mean and yields what are known, following Peto and Peto 
(1972), as the "log-rank scores", or alternatively (as here) the "generalized Savage scores". 

In the parametric setup, likelihood considerations lead to appropriate variance estimators 
for score statistics. Consistent estimates for the variance of censored rank tests for association 
have presented difficulties, however. For a random censorship model in which the censoring 
times ( c f  ,Ci)  are independent of each other and all other pairs, and theif distribution does not 
depend on i ,  a permutational varbnce could be used. However, C: and Ci are often dependent. 
Cuzick (1982) found an estimator which is valid for general error distributions and random censor- 
ship models. This estimate is complicated in general but reduces to a simple form for the pro- 
portional hazards model, viz., the variance of the score test based upon (3.2) can be consistently 
estimated by the number of doubly uncensored pairs. A similar result holds for the parametric 
bivariate exponential model (Oakes, 1982). 
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Clayton (1978) attempted to solve the semi-parametric problem in the Mantel-Cox spirit using 
a bivariate generalization of partial likelihood. This "likelihood" is the product of conditional 
probabilities evaluated over the cartesian product of the set of uncensored observations of T I  
and the set of uncensored observations of T2.That such probabilities may be combined in this 
manner is suggested by standard results concerning the partitioning of the chi-squared test 
statistic for association in contingency tables (Lancaster, 1950; Plackett, 1981). However in this 
case the partitioning does not reflect a factorization of the underlying likelihood, and Oakes 
(1982) pointed out that the individual terms of Clayton's "likelihood" are not independent (or 
more generally, do not form a martingale difference sequence). Thus, although the test and 
estimation procedures developed by Clayton may retain some convenient properties, standard 
likelihood theory cannot be assumed and the variance estimates are optimistic. 

Oakes proposed a third approach based upon Kendall's (1962) rank test for association. If we 
classify a pair (i,j) as "concordant" if the signs of.the differences (Xf -x/) and (Xi - X i )  are 
the same, and "discordant" if they are different, then Kendall's S is given by the total number of 
concordant pairs minus the total number of discordant pairs, thus having zero expectation under 
the null hypothesis. Oakes showed that, for our model, the ratio of the expectations of these totals 
is 0, and that the ratio of the observed numbers of concordant to discordant pairs provides a con- 
sistent estimator for e. Oakes obtained an explicit expression for the variance of this estimator, 
but considered only the uncensored case. The generalization of his approach to  doubly censored 
data would seem possible, simply omitting from the calculations those pairs in which the smaller 
of XI  or X2 is right censored, since such pairs cannot be classified as either concordant or dis- 
cordant. This is in the spirit of Gehan's generalization of the Wilcoxon/Mann-Whitney test, but its 
consequences for the variances of the test statistic and estimator remain to be determined. 

It is interesting to note that further generalization of Oakes' approach is possible. This involves 
assigning some weight, Wij, to each pair and calculating, for the test statistic 

u = z  w, - z w, (3.3)
i/ ij 

concordant discordant 

and for the estimator, 

concordant discordant 

It may be shown that the test proposed by Clayton is of the form (3.3), with,% = l/Nii, and his 
maximum "likelihood" estimator is of the form (3.4) with wij = l/(Nij - 1 t O), where Nij is the 
total number of pairs with both individuals at risk at time 

{min (Xf ,Xi) ,  min(xi ,  X i ) ) .  

Clayton also proposed a locally efficient estimator in the spirit of the Mantel-Haenszel odds ratio 
estimator, with ~ f j  Although the fallacy in the likelihood construction leads us to question = We 
the optimality of these statistics, nevertheless we might expect these weighted forms to be more 
efficient than the unweighted statistics proposed by Oakes. 

4. ESTIMATION OF THE ASSOCIATION PARAMETER 
It  has been shown that an efficient test for association between two possibly censored time 

variables is based on generalized Savage scores. Asymptotically efficient estimation procedures 
can also be derived by replacing complicated multiple integrals in the MLE equations by scores. 
However fully efficient estimators do not use generalized Savage scores, but require scores which 
are adjusted away from them by an amount which depends on a crude estimate of the association 
parameter. 
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4.1. A Likelihood 
To ease the notation we begin by studying the uncensored case. The modifications needed to 

accommodate censoring are similar to those for simpler well-understood situations and will be 
outlined below. 

Assume we observe N independent pairs ( ~ f ,  Xi) ,  i = 1, . . .,N which after a separate 
monotone transformation applied to each coordinate have the bivariate exponential density @ 
given by (2.4). When different transformations are applied to each coordinate, the maximal rank- 
invariant information about y is contained in the two rank vectors R1 and R 2 ,  where 
R1 = (R: , . . .,RY) and R: is the rank of X f  among all ( x i ,  . . .,xY) and similarly for R 2 .  The 
marginal likelihood of ranks for y then takes the form 

r r N 

where @ is given by (2.4) and (xk E R k ) ,  k = 1 , 2 ,  is taken to mean the set of (x i ,  . . .,6)con-
sitent with the observed rank vector Rk .  This likelihood is of little computational value as it 
stands, but we will show that an asymptotically efficient estimate of. y can be obtained by using 
the parametric likelihood based on the density (2.4) and replacing (Xf ,X:) by appropriate scores. 

Theorem 2. Let l(xl, x2;y) = log @(xl,  x2  ;y). If maximizes L(R1, R 2  ;y) and < solves 
(uniquely) 

where 1 '  denotes allay and 

x ~ = E ( x ;  I R 1 ,  R 2 )  
N N . . 

= 1... 1 x i  n @(xi,x!;y)dx:dx! /,I * .  J I-I m ( x l > x i ; ~ ) d x i d x i(4.3) 
j =  1 

( X I  E R ~ )  X ,  E R ,  ) j =  

( ~ E2 R2 1 ( ~ 2f5R, I 
for k = 1, 2, i = 1, . . .,N, then <- < = O(N-' log2N) so that y is asymptotically efficient. Here 
and below expectations conditional on (R1, R 2 )  also implicitly depend on y. 

This expression for 2; is still intractable and also is dependent on y. However we will give two 
computationally feasible approximations to f below when y is known or estimated consistently. 
Then (4.2) and (4.3) can be used to provide an iterative estimate for y. The procedure is 
first to set y = 0 and compute xl.In this case F; = 2;E E(X; I Rk) does not depend on the ranks 
of the other coordinate. The scores E; are the classical generalized Savage scores. These scores are 
used in (4.2) to produce a first approximate estimate ?of y, which is then used in (4.3) to update 
the scores Ti, and produce a refined estimate 7. Further iteration is rarely necessary and in fact 
the estimate y performs better than all previous estimations in Monte Carlo simulations (see 
below). This is an approximate EM algorithm; only the ranks of the observations are known and 
the scale values are missing, and the algorithm fills out these incomplete data at each step of the 
iteration. 

Remark. The result of Theorem 2 and the variance estimator (4.4) below are not restricted to 
the bivariate exponential distribution (2.4) but hold with minor modifications for quite general 
multivariate distributions, in particular they are valid for the bivariate Pareto form of the model 
(see 2.1). 
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Proof of Theorem 2. Let L = L(R 1,  R2;y) and using (4.1) expand the integrand contained in 
a (log L)/ay about Fi,W i ) ,  i = 1, . . .,N to get 

where I '  =allay,  111 = a21 '/(ax1)' etc., and (lil)i means that lil is evaluated at some point-. -. 
between (Xf,Xi) and (Zi,3; ) .Now 

I likI = O(X1 + X2), for j ,  k = 1 , 2  

so that (see Appendix 11) 

I ( I ! ) ~ I = o ( x ~ + x ~ + X L - ~ + - ? : ) ,  i =  1, ...,N
1k 

and since, for k = l , 2 ,  

E(xL)' = 0(FL)', 

E(XL -ZLl4 = O{E(XL -f4)' 

and 

I 

=E(xL-xL)~ = z ( N - j + l ) - 2 = O ( N - I + l ) - 1 ,  
j =  1 

where I is the rank of XL among the (x:, . . .,x:) and the last bound follows from the fact that 
when only the marginal ranksRk are given (or equivalently y = O), the X; can be viewed as expon- 
ential order statistics. (The expectations on the left are conditional on (R1, R 2 ;  y). These 
estimates can be used with the Cauchy-Schwartz inequality to bound the second term in (4.4) 
by a constant times 

1 
N 

( N - i + l ) - '  ( 1 i 

( N - j + l ) - ' )  =0(log2 N). 
i =  l j =  1 

It is easily checked that 

with probability one. Since a log L/ay 1 7=+ is zero, we can expand the first term in the right 
hand side of (4.4) about f and evaluate it at to obtain the desired result that 7-9  is 
o~(N-' log2 N). 

Corollary. If solves 
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then y- <is Op(N-'), so that ?has positive asymptotic relative efficiency. 
-. -- i ,  = 

Proof. Expand C 11(2:,i i ;y)  about (2:,x 2 ,  y) ,  i = 1 ,  . . .,N, to  obtain 

N 

1 - ) ( ) + ( - ( 1 )  CI N l"(x=f,:i;;) 
i =  1 i =  1 (4.5) 

+ higher order terms, 
i = i  = 

where (lL)i is evaluated at (zl, x, ,  y). The estimates in the theorem can be used to show that 
@; - Fk)  = O(N -I + I)-%, 1 I( I ; ) ~= O(x'; + 2;) so that the numerator in (4.5) is o(N'). 

4.2. A Variance Estimator 
We have shown that an efficient estimate for the non-parametric model can be obtained by 

inserting appropriate scores into the MLE equations. However the variance obtained by inserting 
these scores into the variance estimate based on the parametric Fisher information is too small 
except when y = 0. Instead it is necessary to compute the observed Fisher information based on 
(4.1) and then insert scores (and their covariances) to  obtain a consistent estimate. For y = $ 
we have that 

where 

N 

d @ ( ~ )= n $(x:, X ;  ;r )dx f dx: . (4.7) 
i =  1 

- i  = i ,  " 
The first term in (4.6) can be adequately approximated by XlU(Zl ,  x 2 ,  y) and the second term 

ZZ


would be negligible if the (xf ,x i )  were replaced by Cxl, x 2 )  However a Taylor expansion around 
these values and based at y gives a non-negligible term 

where C is the conditional covariance matrix of ( x i , . . .,xy, x i ,  . . .,$) given the rank vectors 
R1 andR2,  

has components 

b;=~$; ,=Xi;?)  i = 1 , .  . . , ~ ; k =1 , 2  

and 1L is the partial derivative of 1' with respect to xk.  
A computationally feasible approximation for C which gives an asymptotically equivalent 

quadratic form is given in Appendix 111. Thus a variance estimator for 7(or T ) is 
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Since bT C: b is positive it has the effect of reducing the Fisher information and increasing the 
variance. Since 1; (xl ,x 2  ;0) = 1; (xl ,x z ;  0) = 0, this term will be negligible when y = 0, as it must 
to agree with the variance estimate for testing y = 0. However it will make a non-trivial 
contribution when y# 0. 

4.3. Modifications for Censored Data 
For censored data the obserration times ( x f ,  x;)(censored or uncensored) must be augmented 

by the indicator functions (D:, D i )  for uncensored observations. The rank.vectors R 1 ,  R 2  must 
now be interpreted as generalized rank vectors (Prentice, 1978) so that R i  =(JL, D l )  where J; 
denotes the number of uncensored X p  less than or equal to x;,and DL is the indicator for X i  
being uncensored. Other important items are the risk sets defined as 63: = { j :  XL >xi) when 
X: is uncensored. When X i  is censored its risk set coincides with that of the largest uncensored 
observation less than or equal to x:. We denote their cardinalties by N: = I 63; 1 .  When there is no 
censoring N; =N + 1 -R:. The bivariate density in the likelihood (4.1) requires generalization 
to accommodate singly and doubly censored pairs. Define 

where (d l ,  d 2 )  are censoring indicators corresponding to (xl ,x z )  and F ,  F1 etc. are the bivariate 
survivor function of Section 2 and its derivatives; explicit expressions are given in Appendix 11. 
If we omit explicit mention of (d l ,  d 2 )  in the notation for @ and regard (R1, R 2 )  as generalized 
rank vectors, then the likelihood (4.1) can be reinterpreted as a likelihood for a Type I1 progressive 
censoring model. In this case the integral should be interpreted as only being carried out over the 
uncensored variables, and times for censored variables should be interpreted as referring to the 
largest smaller uncensored time. Further details and discussion of this likelihood can be found in 
Cuzick (1982). It can also be shown that under general conditions (4.1) can be viewed as an 
approximate likelihood for a random censorship model. 

The estimation procedure is unchanged for censored data. The generalized Savage (logrank) 
scores are given by the well known expression 

(NL)-'
xi G X: 

and -.2;-2; = j . . (X:-2:)d@(y)i 5 . . ./ d@(l), 

{x, E R, 1 {XIE R,1 
(4.8) 

{x, E R2 1 {x2 E R2 1 
where d@(y) is given by (4.7). Note that i7; and 3 estimate the time of the largest uncensored 
observation less than or equal to x i  (or zero if there is no such value). 

4.4. The Pareto Form of the Model 
Alternatively we may work with a Pareto form of the model whch is based more closely upon 

(2.1). For this representation, the likelihood can be written as 
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where f is the unit exponential density function for uncensored observations or survivor function 
for. censored observations (they coincide, as it happens) and the usual interpretation of y '  and 
dy' prevails for censored values. The function g denotes the gamma density with parameters 
(Y-', -I). The ti are the "frailties" and are related to the oi of (2.1) by t' = exp (- mi). The 
change from x's to y's emphasizes that, in this form of the model, y has Pareto rather than 
exponential marginals. Transformation to unit exponential marginals can be carried out by 

the integrated hazard function for the Pareto distribution. 
We note that the inner part of (4.9) is identical to. Cox's partial likelihood for known {ti). 

Alternatively, (4.9) may be integrated with respect to { tz )to yield 
r f N 

where the factors $ are defined as in Section 4.3 (their form is given in Appendix 11). Again 
integration is carried out only over uncensored variables. 

The estimator introduced in Section 4.1 may be obtained .by maximizing the ,parametric 
likelihood which forms the inner part of (4.1 1) using scores Ci;i ,?:) which are obtained from 
the generalized Savage scores (z:,2:) using the transformation inverse to (4.10). 

4.5. Comvutation o f  the Bar-Bar Scores 
We have investigated several approximate methods for computing the scores ilor FL. We 

have used two approaches and each one may be applied in either form of the model, although we 
shall introduce our notation for the exponential form. Both approaches also lead to approxi- 
mations to the conditional variance-covariance matrix, Z, used in the variance estimate of 
Section 4.2; these are given in Appendix 111. 

We start by introducing the important function 

4 @ l , x 2 , d l , d 2 ; ~ )
$(xi , x 2 , d l , d 2 ; ~ ) = l o g  ---

$(x1,x2, d l ,  d2;  0) 

and, making use of the change of measure formula 

we may write the scores 
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where $i = $(xi, x i ,  d l ,  d(  ; y) (Appendix 11). Notice that although the numerator and 
denominator of (4.1 1) are expectations of complicated variables, the probabilistic structure is 
simple (y = 0) and they may be approximated by Taylor expansion of 

Such expansions are in terms of the derivatives of ($1 with respect to  x i ,  x i ,  j = 1, . . ., N and 
we shall use a subscript notation so that $2 represent (vectors of) first derivatives and $11, 
$12 and $22 represent (matrices of) second derivatives. 

Our first approach was to expand (4.13) to second order around (x i ,  xi) and to make a normal 
approximation for the distributions of the spacings of the order statistics under the simple 
probabilistic structure (y = 0). This leads to an expression for the x; which contains the inverse 
of a 2 N  x 2N matrix. Alternatively, the 5; can be viewed as the solution of 2Nlinear simultaneous 
equations which may be solved iteratively although convergence is not guaranteed. Written in the 
iterative form, these equations are 

where 

which may be regarded as approximations to the first derivatives $ k  evaluated at (i ' l ,  k2) .  
Our second approach involves expansion of (4.13) to first order only, but around (xl , x 2 )  

rather than (TI,  X 2 )  Heuristically, we might expect this to represent the same order of approxi- 
mation as our first approach. Now there is no need of the normal approximation, but of necessity 
this leads to  an iterative method which seems to be numerically more stable than that implied by 
(4.14) and (4.15) although it seems less amenable to theoretical development. Some algebra shows 
this approach to lead to the (non-linear) equations 

\ -1 - .  


xi,< x; 

which may be solved iteratively starting from (Fl,  x2) .  Comparison of this with (4.14) and (4.15) 
shows that the two methods are numerically similar when the discrepancies (?; -X;) are small. 

The second method is also suggested by other more heuristic arguments. The first of these views 
the transformation of the observations X; to  the scores 2; (whose marginal distributions are 
known) as being piecewise linear with discontinuities at the observed failure times. This argument 
parallels that of Breslow (1974) in deriving a nonparametric estimator of the baseline hazard 
function of the proportional hazards model. A similar approach has been used by Bennett (1983a, 
1983b) for the univariate rank regression problem with logistic errors. 

However, perhaps the most compelling heuristic argument arises with the Pareto form of the 
model. Here it may be shown (Appendix 11) that 
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and some algebra shows that when bf,y : ,  Df ,D:) are known, the ti are independent gamma 
variables with shape parameter (Df + Di + y - ' )  and scale bf+ y i  + y - I ) ,  so that 

where 

may be thought of an "imputed frailties". 
This leads to an alternative conceptual view of our proposed method. Since the only 

dependence of the likelihood (4.9) upon y is in the function f ,  it is easily shown that 

Also 

where *(q) is the digamma (psi) function I" (q)/I'(q),and this scoring method is formally 
equivalent to approximation of (4.18) by 

-

N 

-- I [i  = Ti' 

A variance estimator can be computed as before. Using (4.9),a little algebra shows that 

where the expectations are conditional on R and R 2 .  
The first term in (4.20) can be approximated by replacing tiby and, after expansion about 

the $', the second term has the non-trivial approximation 

which requires the evaluation of the covariances of the tigiven R 1  and R 2 . This can be done by 
conditioning on the (yf,y:).  To first order, one can treat the tias being conditionally orthogonal 
with variances given by 



CLAYTON AND CUZICK [P;r.t 2, 

l + r ( ~ f + ~ : )I R  ] +D:) I{ l + t ( ~ f  ]
R2 + var --- R1,R2 

1 + rbf + Y : )  

---- 1 +T(D; t o ; )  = Y ---( 1  +?@f ty;)12 . 

5 .  FIXED COVARIATES 
The development in the preceding sections can be extended to handle observed covariates. 

The linear model (2.1) now becomes 

where (zl ,  z2)  are observed covariate vectors which may be different for the two coordinates, 
P2) are vectors of regression coefficients whose components are assumed to be different in 

general, even for the same covariate and, as before, o is a'shared random effect independent of 
(el ,  e2) which have independent standard extreme value error distributions. A minor modification 
would allow some of the regression coefficients to be the same in both coordinates. Another 
model with the same covariates in each coordinate and identical regression coefficients will be 
developed in the next section. 

Because of rank invariance, it is not possible to estimate constant (hazard level) effects in either 
coordinate. Estimation of Q1 ,  p2,  7) is based on a modification of the scoring technique used 
previously. The following fact is basic to this scoring procedure: 

Theorem 3. Let Ti be independent exponential random variables with parameters Xi, 
i = 1, . . .,N. Define the random index I by TI = mini(Ti). Then Iand TI are independent and the 
distribution of TI is exponential with parameter Z hiso that 

From this it follows that if Y; = exp($) is uncensored and A; denotes the difference between 
Y; and the largest uncensored YL strictly less than Y; (zero if no such value), then conditional 
on (R1, R z ,  a ) ,  the A; are independent exponential random variables with means 

(Strictly speaking, we must also assume that all censoring takes place instantaneously after the 
previous uncensored value, as in Type I1 censoring. However for realistic censoring mechanisms 
this only affects the expectation to order N-2 and can be ignored.) 

A number of important new results can be derived for the simpler problem of only one 
dependent variable and these are considered first. 

5.1. One Dependent Variable 

In this case we omit subscripts from all variables and write 


where now (w + e) can be treated as the log of a Pareto error variable. By fixing y,  we have a 
model for rank regression for any member of this error family. The proportional hazard regression 
model corresponds to y = 0. Testing procedures for 0= 0 in a general linear rank regression model 
have been presented by Prentice (1978). A one parameter sub-family of these weighted logrank 
tests has been studied by Harrington and Fleming (1982). These tests are precisely the score tests 
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for the partial likelihood based on (5.2) and our model provides an interpretation of their tests in 
terms of heterogeneous y-frailties. In addition our approach can also be used for multivariate point 
and interval estimation. The choice y = 1 corresponds to  a logistic error distribution and is worthy 
of special note. 

It is interesting to note that the proportional hazards model is in some sense an extreme point 
and that the Pareto and log-logistic error structures can be thought of as arising from the addition 
of further unmeasured population heterogeneity. 

By not fixing y in advance the amount of population heterogeneity can be estimated. In parti- 
cular, the score test for y = 0 provides a simple useful test for proportional hazards against the 
alternative of converging hazards (which is a consequence of population heterogeneity). Because 
the proportional hazards model is extremal within our family, no  test for diverging hazards is 
available. However, tests for other Pareto (in particular log-logistic) error structures can also be 
developed as well as tests for 0 = 0 at some estimated y. 

We begin with the form of the likelihood used in Section 4.4: 
N 

where t i ,  C#I and f are as in (4.9) and 6' are the relative risk functions exp (-pT.Zi). Then 

N 

a log Ljap = 1 E{Z' (- D' + tiyiei) I R ). (5.4) 
i =  1 


When 0 is futed, it is easily verified that, given the vectors y and R ,  the t i , a re  conditionally 
independent gamma variables with shape parameters y-' + D' and scale y-'  + y'ei .  It follows that 

Thus, as at (4.17), we can rewrite (5.3) and (5.4) in terms of y i  alone as 

-
To find @, .I)we now set these ecluations-equal to zero, replace y i  by an estimate of;' = E(yi I R) 
and solve iteratively: set y = 0, compute 0 from (5.6) as in a proportional hazards model, compute 
y as shown below, compute 7 from (5.5) with the current estimates of P and 5 and iterate as 
necessary. 

As with method 2 of the last section, it can be shown that 
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which suggests the iterative approximation 

When y = 0, the Pareto and exponential forms of the model coincide and the scores can be com- 
puted exactly (when 0 is known). Not surprisingly in the light of the discussion of the previous 
section, they turn out to be identical to Breslow's (1974) estimator of the integrated baseline 
hazard function, 

When y # 0, we may define scores as we did in Section 4.4, i.e. as those obtained from (5.7) 
by a transformation inverse to (4.10). 

The information matrix for L is given by 
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where Z @  denotes zzT,a log flay is given by (4.17) and 

a2 log f -- -1 
(3 -y-' -2(C; -log C; + log y + qy-'))}.

ay2 y3 

As before the last term in each of these expressions is asymptotically negligible. The last term in 
each expectation can be evaluated by expanding about bar-bar scores, and the terms involving 
second derivatives can be evaluated by replacing all C;' by the appropriate function of Y' (by 
making use of their conditional gamma distribution), and then evaluatin the y i  at the 7' score 
values. Alternatively one can begin with (5.6) and (5.7), which have no C;9 terms and take further 
derivatives of these expressions. Both approaches are cumbersome in general, but simplification 
occurs in some cases. 

In particular a test for proportional hazards (y = 0) at some estimated /?can be based on they  
scores given at (5.7). From (5.5) a little calculation shows that the test statistic is 

where 0" -- e - p T z i  and is estimated at y = 0 by the usual proportional hazards methods (Cox, 
1972). This test has mean approximately zero when y = 0 and is of the same form as a test for 
overdispersion when the null hypothesis requires independent unit exponential variables (see Cox 
and Lewis, 1966). The power of the test will depend on the amount of variation induced in Y 
by bTz.When y = 0 the estimators for y and 0 are asymptotically independent so a variance 
estimate for (5.8) can be based on -a2 log ~ / a ~ ~and takes the form 

Remarks. 
(1) Taking y = 0 gives the proportional hazards model. In this case our method is an exact EM-
algorithm and provides an alternative computational scheme for maximum "partial" likelihood 
estimation. This method is particularly convenient for implementation via CLLW (see Clayton 
and Cuzick, 1985, for details). 
(2) Fitting the fully parametric regression model with Pareto errors may easily be achieved in the 
computer program GLIM (Baker and Nelder, 1978) using an extension of the method described 
by Aitkin and Clayton (1980) for exponential errors. The indicator variables, Di,  are declared as 
y-variate, with binomial error structure, the number of trials being (Di + y-'), and the logarithms 
of the observed times are declared as offset. The re~lacementof times bv bar-bar scores would 
appear fairly straightforward as a macro so that the computations described in this section would 
appear to be conveniently carried out in CLIM. This will be reported in detail elsewhere. 
(3) In the case of fixed y, our estimation procedure differs from that proposed by Pettitt (1982) 
in that he would expand the logarithm of the likelihood about 0 = 0 to quadratic terms and use 
the approximate log-likelihood for estimation. Such a procedure leads to biased estimates in 
general and does not enjoy the asymptotic properties of our method. The R-estimation procedure 
discussed by Huber (1977) provides another general approach, but would require considerable 
further development to be tractable in the present context. Also, it requires more than basic rank 
information for estimation. 
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5.2. Two Dependent Variables 
We return now to the model (5.1). The interpretation of y in this model differs from that in 

(5.2) in that now y is a measure of association between T i  and T2 after adjustment for Z 1  and 
Z 2 ,  whereas in (5.1) y was a measure of population heterogeneity. The extent to which the 
interpretation of 7 as an association parameter is confounded by population heterogeneity which 
is not shared by the two coordinates (i.e. independent variables ol and w 2  added to S1 and S2 
respectively) is in need of further study. 

The likelihood for the ranks of N independent observations from (5.1) is given by 

where 8;  are the relative risk functions exp (- P ~ z ; )and with the usual conventions for censored 
observations. The MLE equations are obtained from 

with the appropriate modifications if some of the P 1  are constrained to equal some of the p 2 .  The 
estimation procedure is similar to that developed previously, the main difference being that the ti 
conditional on yi  ,y ; ,  R 1 ,  R2  have independent gamma distributions with shape and scale para- 
meters 

so that 

Scoring is similar to the previous subsection. When the ti are known or taken as fixed, estimation 
of p l ,  f 1 2  can be carried out by the usual proportional hazards algorithms. In particular the score 
test for y = 0 (no association) takes the form 

where the i k  are as at (5.8). This test has the form of an inner product between the @'B '̂ -Di) 
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scores and two terms which measure population heterogeneity in the marginals. In view of the 
possible confounding of association with unassociated marginal heterogeneity a more robust test, 
when this is suspected, might be simply the inner product 

Another possibility is to estimate y l  and y, for the marginals separately as in Section 5.1, score 
each marginal according to the estimates of Pk and yk, k = 1 , 2  and then correlate these scores. 

6. MATCHED PAIRS AND SIBLING PROBLEMS 
In some circumstances, such as the matched pairs setup of Holt and Prentice (1974) or Woolsen 

and Lachenbrach (1980), the randomized block experiments of Sampford and Taylor (1959), or 
the litter matched experiments analysed by Mantel, Bohidar and Ciminera (1977), and Mantel and 
Ciminera (1979), members of the sibships (matched groups) are indistinguishable save (possibly) 
for the values of covariates. In such circumstances only a single universally applied monotone 
transformation will be necessary to reduce all variables to a canonical scale. This implies that the 
interleaved rankings of the combined data set contains more information than the separate 
marginal rank vectors. Also, any covariates should have the same regression coefficients for all 
individuals. We shall use the word sibship to denote matched group more generally, and use super- 
scripts to denote sibship for consistency with earlier sections. For consistency, subscript should 
denote individual within sibship, but for greater flexibility we shall use subscripts to denote 
individual regardless of sibship. The model can now be written as 

when the ith individual belongs to the jth sibship, denoted i E s i .  Note that the vector fl is in- 
dependent of position in the sibship. As before we take the inter-sibship variation o to be 
log-gamma and the intra-sibship (individual) variation e to be extreme value. The data consist of 
the covariate values, a combined generalized rank vector for survival times denoted R ,  and a 
vector specifying sibship membership, denoted S. The likelihood takes the form 

C * P 

L(R, S;P ,  7) = 1 . 1 1 n n ~ ( t j y i e " ~ ) f ( P ;  7 ) d t j d y i  
{ y ~ ~t i i ~ s i) 

where j indexes sibships, @ = exp (- oi) and the usual conventions for censored values apply. 
MLE equations, variance estimates and approximate scores can be developed as before, except that 
the expectations are now conditional on the combined ranking R.  

Two important cases are (a) a measure of association with no covariates and (b) randomized 
treatment allocation with matched pairs. In the first case the likelihood can be written as 

where 

This leads to the MLE equation 

which can be rewritten in terms of the yi by noting that, conditional on all the yi, i~ bii, ii is a 
gamma variable with parameters (y-' tD!) and (y-' t y!). Thus 
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{ I  t l y ( ~ ! t y - ~ ) - e ( r - ' ) ) ]. 	 (6.2) 

Point estimation can be carried out by setting (6.2) equal to zero and replacing the yi by the scores 
$i and solving iteratively as before. The approximate scores test for y = 0 is easily obtained since 
now the Li =yi are simply the logrank scores for the combined sample. This leads to the test 
statistic 

which has an interpretation as the difference between observed and expected intra-class variation. 
Testing and interval estimation require a variance estimate which can be based on an 

approximation to 
2 

where b = ( b i , .  . .,b N ) and 

and X is the conditional covariance matrix of the yi given R which can be computed as before. In 
particular when y = 0, b = 0 so that a variance estimator for the test (6.3) is 

1 
var (7') = 	- - Z{2@!)3 - 3 ~ f ( ' j ( ) ~+ D!(D!- 112) (D!- 1 ) ) .  

3 i 

Another important special case is randomized treatment allocation in matched pairs. In this case 
we can use equations (6.1) and interpret zi  as an indicator variable for treatment. Then /3 is a scalar 
which measures relative survival differences associated with treatment and y accounts for variation 
shared within pairs. Additional covariates are easily accommodated. Estimation follows the usual 
prescription. In particular the test for 0 = 0 with an estimated y takes the form 

where j indexes the N pairs, i indexes the 2N individuals, 

and all scores are obtained by setting /3 = 0 and using the univariate MLE estimate 7 for y. A var- 
iance estimate takes the form 
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7. NUMERICAL RESULTS 
In this section we investigate the behaviour of the methods of Section 4 by Monte Carlo 

simulations. Pairs of variables, (XI ,  X2),  distributed according to the bivariate exponential 
distribution with association parameter y were generated from pairs of independent uniform 
pseudo-random numbers, (U1, U2), by the transformations 

where 

p = (U2)~I ( '+7). 

We generated 1000 datasets for each of four assumptions for sample size. The first three types of 
dataset consisted of N =  50, 100 or 200 pairs of observations, with the largest 10 values 
respectively of each variable censored, and the final type had N =  100 with the largest 50 censored. 
We took y = 1, corresponding to the moderate degree of association of heart disease incidence] 
mortality in fathers and sons (Clayton, 1978) and of breast cancer incidence in mothers and 
daughters (unpublished work). This corresponds with an exponential distribution of frailties. We 
estimated y for each dataset using five methods described in this paper: (a) the fully parametric 
method, taking the marginal means as unknown; (b) the method proposed in Section 4, using the 
bar (generalized Savage) scores; (c) the method of Section 4 using bar-bar scores calculated by our 
second approach of Section 4.5; (d) and (e) the concordance estimator (3.4) using, respectively, 
Oakes' (unit) weights and Clayton's non-iterative weights. In further simulations, our alternative 
approach to the computation of the bar-bar scores gave almost identical results, but were more 
prone to convergence problems. Other simulations using the Pareto "imputed frailty" scores also 
gave results almost indistinguishable from those obtained under (c). The concordance estimators 
required more computation and no results are presented for the largest sample size. Iterative 
refinement of the weights for Clayton's form of this estimator has a negligible effect upon the 
estimates for these sample sizes and was not attempted. 

Table 1 shows the results of these simulations. All the non-parametric estimators performed 
well, particularly under the heaviest censoring where all achieved full efficiency relative to the 
parametric method. Unexpectedly, in the remaining cases, the estimator y outperformed the other 
non-parametric estimators. 

It would appear that, when the parametric ML estimate is low, then y tends to be even lower. 
The refinement of the bar scores to bar-bar scores seems to correct thls, but at the cost of an 
increase in errors of overestimation. We conclude that, for these values of N and y, the methods 
we have investigated for computation of the bar-bar scores are not sufficiently accurate to capture 
the small amount of information theoretically available. The computationally simpler method 
using bar scores would, therefore, be recommended for practical purposes. 

The concordance estimators also performed surprisingly well. As expected, the weighted 
(Clayton) estimator was rather more efficient than the unweighted (Oakes) form. 

8. CONCLUDING REMARKS 
Starting from the problem of nonparametric estimation of the association parameter of a bi- 

variate generalization of the proportional hazards model, we have been led to consider a wider 
class of models. This class is an extension of the proportional hazards regression model of Cox 
(1972) which allows a random effect (distributed as the log of a garmna variate) in addition to the 
fixed effects of covariates. At its simplest, this allows rank regression analysis in a generalized 
Pareto family including both proportional hazards and proportional odds (logistic) models. More 
complex is the bivariate model, which allows separate regression models for both variables and 
associated errors. The sibship problem is one example of a multivariate model. The most complex 
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TABLE 1 

Distribution of estimates from 1000 simulations, gamma = 1 

N = 50,10 censored 

Method Mean Median S.D. I.Q.range 

(a) 
(b) 
(c) 
(d) 
(e) 

Parametric 
Bar scores 
Bar-bar scores 
Oakes 
Clayton 

N = 100, 10 censored 

Method Mean Median S.D. I. Q. range 

(a) 
(b) 
(c) 
(d) 
(e) 

Parametric 
Bar scores 
Bar-bar scores 
Oakes 
Clayton 

N = 200, 10 censored 

Method Mean Median S.D. I. Q. range 

(a) 
(b) 
(c) 

Parametric 
Bar scores 
Bar-bar scores 

N = 100, 50 censored 

Method Mean Median S.D. I. Q. range 

(a) 
(b) 
(c) 
(d) 
(e) 

Parametric 
Bar scores 
Bar-bar scores 
Oakes 
Clayton 

model would permit general multivariate gamma frailty distributions, normalized so that each 
marginal frailty has shape parameter equal to its scale parameter. This extension will be 
developed elsewhere. 

Our approach is fully nonparametric in the dependent variable(s) and consists of, firstly, 
transforming the observed responses so as to have known marginal distributions rank order scores 
and, secondly, estimating the parameters of the model by maximum likelihood treating the scores 
as if they were genuine observations with known marginal distributions. As the heterogeneity of 
frailty in the population (i.e. the variance of the random effect) approaches zero, the efficient 
scores approach generalized Savage (logrank) scores, but the computation of efficient scores when 
frailty is heterogeneous presents difficulties. We have suggested two possible approaches, but there 
is a need for further work both on the properties of these methods and upon possible 
improvements. 

The field of application of such models is wider than the f d u r e  time problems which motivated 
this research. The possibility of fully nonparametric testing and estimation of treatment effects in 
split plot designs is of particular interest. An example in medical statistics is the analysis of the 
two-period cross-over clinical trial which is complicated by the occurrence of both between- and 
within-patient errors. This problem is commonly avoided by relating some contrast between the 
first and second period responses to the treatment order, but a rank invariant analysis of this type 
can only use sign contrasts and must be expected to be inefficient. 
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There is considerable scope for extension of the methods described in this paper. Clayton 
(1978) discussed inference from case-control studies of familial aggregation of disease using the 
model of Section 2. Although his likelihood is inaccurate, our simulations suggest that it may be 
applicable in this important special case. A study of the present approach under the extremely 
heavy right censoring occurring in epidemiological incidence studies, and of its implications for 
the analysis of case-control studies would be of some interest and importance. 
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APPENDIX I 

Proof of Theorem 1 


The proof is trivial when y = 0 .  Take y > 0 . First assume that A\ and A; are strictly positive on 
( 0 , m). Then H1 > 0 and Hz > 0 on Ri  for if H 2 ( t 1 ,  t 2 )  = 0 for some ( t l ,  t 2 ) ,  then H 1 2 ( t l ,  t 2 )  = 0 
and (2 .2)  implies H2( t ,  t 2 )  = 0 for all t 2 0 .  In particular H2(0 ,  t 2 )  = 0 in contradiction to our 
assumption. Thus we can write (2.2) as 

a 
H1 = -y-' H12/H2 = -y - l  	 -- (log H z ) .  

at 1 

Integrating this with respect to t l  gives 

log Hz + G ( t 2 )  

for some function G . Evaluating this at the boundary ( 0 ,  t 2 )  gives 

~ ~ ( t ~ ) = ~ ( o , t ~ ) = - y - l  + c ( t 2 )l o g { ~ ; ( t ~ ) )  

and substituting this into (I.l), we have the first order ordinary differential equation 

Hz = 4 2 ) exp (- yH) 
with initial condition H ( t l ,  0 )  = Al  ( t l )  where 

= A i ( t 2 )  exp (yA2  ( t z ) ) .  
The substitution z = exp (- yH) in (1.2) leads to the equation 

z' = - yA(t)  z2 

which is easily solved to yield 

exp ( y H ) = z  = { y J A ( s ) d s  + const ) - I .  

Using (I.3),we find 

JA(s)  ds  = y-' exp { y ~ ~ ( t ~ ) )+ const, 

so that 

~ ( t l ,t z ) =  y - l  1% [exp ( y A z ( t 2 ) )  + F ( t l ) l  
for some function F .  The fact that F ( t l )  = exp { y A l ( t l ) )- 1 follows from the boundary 
condition. 

In general, when A l  and A2 are assumed only to have continuous derivatives let 
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so that 

H12 = H, Hy A; A; 

and (2.2) is equivalent to 

Hxy = - yHxHy  or A', = O o r A ;  =O. (1.4) 

Now (1.4) has the convenient boundary conditions Al  ( x )  = x ,  A 2 b )  =y so that at values of 
( t l ,  t z )  where both A l  ( t l )  # 0 and A z ( t 2 )# 0, the unique solution of (2.2) can be obtained from 
the unique solution of (1.4) by a change of variable. Since H(tl , t 2 )is continuous, the solution can 
be extended to the closure of the set on whch  A',( t l )>0 and A;( t2 )>0. The remaining diffi- 
culty occurs when A; or A; equals zero on an interval. Assume A; = 0 on [a,  b ]  . Then it can 
easily be shown that H12 = 0 on [a, b ]  x [0, w]  SO that H ( t l ,  t 2 )  = F ( t l ) + G(t2 )for some F,  G 
on this rectangle. A continuity argument then establishes that H ( t l ,  t 2 )  =H(a, t z )  on [a, b ]  x 
[O, w],and the general solution can be patched together accordingly. 

APPENDIX I1 
Some important functions 

For the bivariate exponential form of the model, the contribution to the likelihood of an 
observation ( x l ,x z ) with corresponding censoring indicators ( d l ,  d z )  is 

so that the function $ of Section 4.5 is 

$(x1,  x2 ,  d l ,  d z ;  Y )  = dld2 1% (1 + Y ) + (1 + Yd1)xl + (1 + yd2)x2 

- (d l  + d 2  + l / y ) log {eYXl +eyXz - 1 ) .  

The first derivatives of + with respect to x k ,  k = 1 , 2  are required in the calculation of bar-bar 
scores by methods 1 and 2 and are given by 

For the bivariate Pareto form of the model introduced in Section 4.5 and used in Sections 5 and 6, 
these functions become, for an observation (y l ,y 2 ) with associated censoring indicators ( d l ,  d 2 ) ,  

and, 

APPENDIX I11 
Covariance matrix of scores 

Both approaches to the calculation of approximations to the conditional expectations 2 may 
also be used to approximate the conditional covariance matrix Z used in the variance estimator of 
4.2. For our first approach 
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Dft Dy 
~ ~ 1 ~ ~ ~ ~ ( ~2 ~. , ~Z: ,~ ~ ~ 1 , ~ 2 ) = 

X; xk XY < X: N: ivy % 
where the 2N x 2N matrix M is given by  

6; 

where 

= 1, i = j a n d k = l ,  
= 0, otherwise, 

and J& are as in  (4.15), i.e. the second derivatives o f  +(x l ,  x 2 ,  d l ,  d2;y) with respect t o  X I ,  x2 

evaluated at  (3f, ,D;).z;, ~f 
Our second approach leads t o  a coinputationally simpler form which may be shown t o  be 

equivalent t o  a n  approximation of  the above expression using the first t w o  terms of a Neumann 
expansion for the inverse of  W. 

DISCUSSION OF PAPER BY M R  CLAYTON AND DR CUZICK 

Dr Richard D. Gill (Centre for Mathematics and Computer Science, Amsterdam): This paper 
is a first really successful attempt at statistically modelling dependent survival times. The authors 
present a model and accompanying statistical analysis which can be applied t o  censored matched 
pairs, t o  the study of association, and t o  problems of unobservable covariates. Though the  model 
itself has been around for  some time, and despite its close relationship t o  Cox's proportional 
hazards model, i t  has so far resisted satisfactory treatment. The present authors in fact need 
unfamiliar statistical principles: their methods are based on  approximations of marginal 
likelihoods. A second approximation involved is that the marginal likelihood being used is that 
appropriate t o  Type I1 censoring, even if the  actual censoring mechanism is another one. 

A lot remains t o  be done. The methods seem powerful and easy enough for wide application. 
However, they are only s u p p 0 r t e d . b ~  heuristic mathematics, by simulation results and by practical 
experience. 

I would like t o  suggest an alternative scheme for estimation and testing in these models, based 
on  completely opposed principles: (non-parametric) maximum likelihood using the full likelihood 
of the  observed data. However, there are many striking similarities. To  illustrate this approach 
consider one of the simplest ap.plications: the bivariate symmetric case. 

Suppose we observe ( X i ,  D i ) ;  k = 1, 2,  i = 1 , .  . ., n where 

~ L = m i n ( T ; , c L ) ,  DL=I(TL<cL) ,  

and (Tf ,  Ti ,zi),i = l., . . ., n ,  are i.i.d. triples. ziis gamma 
d 
y-l) distributed and conditional 

on  zi= zi,Tfand T: are independent, each with hazard rate zzA ( t ) ,t 2 0. The CL'S are censoring 
variables. Let A' ( t )= J6Ao(s) ds be the  underlying cumulative hazard rate. 

Under "noninformative censoring7' (see Arjas and Haara, 1984) the likelihood for the observed 
data is 
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Here f(z; k, q )  is the gamma density with shape and scale parameters k and q respectively and (for 
the time being) p is Lebesgue measure so that (dAO/dp)(t) = h0 (t). 

It is natural to  estimate the parameters y and A'(*) by maximum likelihood in the spirit of 
Johansen's (1983) treatment of the proportional hazards model. We propose taking (1) as likeli- 
hood for (y, A:) even when A' is not absolutely continuous, letting p 9A' now be arbitrary. 
The MLE (y, A') is the parameter value which maximizes (1) in any pairwise comparison, 
choosing p anew in each comparison. A0 turns out to  be a step-function with jumps at the 
observed failure times only. So we maximize (1) over such AO's only, which is the same as 
maximizing (1) with (dAO/dy)(t) replaced by the jump at t AAO ( t )= A' ( t )  -A' (t -). 

To avoid integrating out the zi's we may use the EM algorithm. Suppose for simplicity y is 
known. Since zi enters in (1) as the gamma (y-' + Z k D i ,  y- l  + ZkAO(xL))  density, the algorithm 
has as E-step: 

and M-step: 

These are simply the bar-bar iterations (4.17). 
Since the integral in (1) has a simple closed form expression, estimation of y is most easily 

done by maximizing (1) over A0 for each of a range of values of y. 
What about justification of this method? Again, only heuristics are available. If these estimates 

are a smooth enough function of the data, very nice large sample properties follow immediately: 
asymptotic normality and even efficiency in the sense of Begun e t  al. (1983); Gill, (1985); 
and Bickel (personal communication). Note that we need t o  extend (1) as smoothly as possible 
t o  discrete AO's, not as realistically as possible. However the "if" here is a very hard problem. 

So both approaches are very close and proving their large sample properties just as difficult. 
We hope others will take up the challenge too. 

Professor P. Armitage (University of Oxford): The authors are t o  be congratulated on laying 
the foundation of a general theory of association for right-censored variables, and incidentally 
for managing t o  reconcile the different approaches they had previously taken. I am glad that they 
refer to  applications in the econometric literature. The analysis of survival data has mainly been 
associated with medical applications, but right-censored time variables occur in the social sciences, 
in biology and industrial technology, and the topic should be regarded as part of the general 
methodology of statistics. 

The authors describe a measure of association playing a role analogous t o  that of the cor-
relation coefficient in bivariate normal data. I was reminded of the remarks made by 
F. J .  Anscombe in the discussion on  Hotelling (1953). "It seems t o  me", said Anscombe, "that in 
most multivariate problems when correlation coefficients are calculated, they are of no interest 
in themselves but only as a step in calculating something else. . . . Am I right in suggesting that 
the cases where a correlation coefficient is itself of direct interest are rather rare?" A similar point 
could be made about the topic under discussion today. The question at issue with bivariate survival 
times is often one of regression. If a cancer patient has a given remission time, what can be said 
about the distribution of subsequent survival? The authors allude t o  these questions, but it would 
be useful if they could explain more clearly the connection between the correlation and regression 
aspects of their theory. 

The "frailty" concept inevitably brings to  mind the concept of "accident proneness", and the 
two approaches t o  the basic model, outlined in Section 2, are reminiscent of the way in which 
bivariate accident distributions can arise by mechanisms oth.?r than proneness. One of the moti- 
vations of proneness theory was the hope that the rrmoval of people with high initial accident 
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experience would substantially lower the subsequent incidence. On the whole this hope was 
illusory. Similar questions might arise with bivariate survival data. If individuals with low values 
of T1 were removed, how would that affect the marginal distribution of T2?  Has this been 
considered by the authors? 

Finally, nomenclature. The authors have used a new term, "bar bar scores", conjuring up 
visions of forty thieves, black sheep and the king of the elephants, presumably in a bid to  capture 
the under-five market. In my view the authors will need to simplify their mathematics if they 
hope to do this, and I look forward to their next move in this direction. 

It gives me pleasure to  second the vote of thanks. 

The vote of thanks was carried by acclamation. 

Dr J. R. Whitehead (University of Reading): This ingenious paper has introduced an analogue 
of the correlation coefficient into the study of bivariate censored data. However, in the analysis of 
ordinary data, I tend to be a regressor rather than a correlator. Therefore, I am interested in how 
the approach of tonight's authors relates to  a proportiona1.hazards regression approach. 

Some of the examples mentioned in the introduction seem t o  be well suited t o  regression 
modelling. When considering the effect of time from remission t o  relapse on time from relapse to  
death, the former time will be uncensored and usually a prediction of the latter will be required. 
Again, if the heart-attack-free lifetime of a father is to  be used as a predictor of the same variable 
for his son, then a regression model, with a conclusion in terms of relative hazard would seem 
appropriate. However, now there is a problem: the father's heart-attack-free lifetime is a censored 
observation. 

One way of modelling such a covariate is via the linear term 

which would appear in the exponent of the relative risk. Here a is the number of years survived 
by the father without a heart attack, and h equals 1 if father had a heart attack and 0 otherwise. 

Now consider two men; the father of Case 1 had a first heart attack at age a ,  the father of 
Case 2 has had no heart attacks and is age a .  Thus, relative to  some baseline hazard function Ao(t) 
the men have the hazard functions 

respectively. Hence 

From Section 2 of tonight's paper we see that the authors' 8 is equal to  exp p 2 .  Of course exp p2 
can be estimated from the sons' survival times by ordinary proportional hazards regression. 

Suppose, next, that the dependence of the fathers' hazards on  their sons' heart-attack-free 
lifetime can be modelled in the same way, using the linear term y l a  + y2h .  Now a and. h refer t o  
the son. Section 2 also shows that 8 = exp y 2 .  The paper shows how the fathers' survival times 
can be combined with those of the sons t o  provide a more accurate means of estimating 8. This 
greater accuracy is only present if both dependencies can be modelled as above, and this would 
require careful checking. Presumably, the linear model irlethods of Section 5 could be used to 
answer questions about pl and y l ,  as well as incorporating other covariates into the analysis. 

Professor Murray Aitkin (University of Lancaster): The model (5.1) with a shared random 
effect in the log hazard is a generalization of an exponential family model with a random effect 
in the linear predictor. These models are widely useful because they can represent a wide range of 
"extra variation": heterogeneity due t o  omitted explanatory variables, variance components for 
several levels of nesting, measurement error in the explanatory variables, or outlying observations. 
Finding parametric models for the random effects which integrate t o  a tractable form for the 
marginal distribution of the observed data is both difficult and restrictive. 

If we estimate the distribution of the "mixing variable" by nonparametric maximum likelihood, 
we avoid completely the specification of this distribution, and gain a very powerful and general 
procedure based on fitting finite mixture distributions, which can be achieved using GLIM macros. 
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The approximate marginal likelihood approach forced on the authors by using rank methods is 
quite difficult t o  handle, though the authors are ingenious in their development of EM algorithmic 
approaches recognizing the order statistics as missing data and the ranks as observed data. 

A possible alternative semi-parametric approach to the model (5.1) is t o  reverse the authors' 
approach: t o  specify a full parametric kernel distribution for the ~i without the monotone trans- 
formation, but t o  estimate nonparametrically the distribution of w in fitting the model. This is 
quite straightforward computationally. 

Dr A. N.  Pettitt (University of Loughborough): I congratulate the authors on  a comprehensive 
and stimulating paper. I wish t o  make these points. 

(i) The authors refer t o  Pettitt (1982) where approximate estimates for the model of Section 
5.1 are given. This approximate estimate of fl is a 1-step Newton-Raphson estimate starting from 
0 = 0 using the rank likelihood. Standardizing the explanatory variable z t o  lie in [- 1, 1 1 ,  it is 
straightforward t o  show that this approximate estimate is asymptotically efficient,.in t e r ~ s  of the 
rank likelihood, if P = o(1); see Cox and Hinkley (1974, p.308). This allows for fl/(var fl)% -+rn, 

that is the P-value for H: 0 = 0 can go t o  zero. 
(ii) A fully parametric model might be preferred if predictions about individual observations 

are required or  the transformation, g, say, t o  the canonical model can be identified with high 
precision. For original observations on Y giving the canonical model 

g(Y) = pTz + error 

the authors' method of estimation provides approximations to  E(g(Y) 1 ranks, fl), that is the 7 or 
scores. If the original observations are plotted against their final scores then this gives a curve 

close t o  g-l (.), so trial, transformations of the Y's can be plotted against these scores, seeking a 
straight line relationship. Note, of course, that the g( ) function can change as explanatory 
variables are removed or added to the model. 

.4 

(iii) The expectations E(g(Y) I ranks fl) at the final estimate fl are also useful in the assessment 
of influential cases, in the spirit of Cook and Weisberg (1 982). 

(iv) Without specification of the transformation, how can these models be used t o  relate t o  
the original observations or future observations? Pettitt (1982, Section 5)  and Pettitt (1983, 
Section 7.1) made some suggestions. For example, for the sibling model of Section 6,  within sib- 
ship comparisons can be made by considering Pr (S'i >Sil 10). Now 

and the event {si>Sit) is invariant t o  monotone increasing transformation. Pettitt (1 983) also 
considered the maximum median response for a quadratic response model. Another approach, 
Acar and Pettitt (1984), considers the probability that a future observation has a value between 
the observations having ranks j and j + 1. 

The following contributions were received in writing, after the meeting 

Dr S .  M. Gore (MRC Biostatistics Unit, Cambridge): Mr President, ladies and gentlemen, 
I congratulate Mr Clayton and Dr Cuzick on a very fine collaboration, which was initiated 
three years ago on the snow-covered hills of the Black Forest. This evening's paper is a fitting 
tribute t o  the Oberwolfach ideal of intellectual and social exchange in an exhilarating, isolated 
and  beautiful location. 

Mr Clayton and Dr Cuzick generalize the proportional hazards model t o  the problem of two 
time variables with unspecified marginal distributions which are related by a single association 
parameter. The eccentricity of the proportional hazards model within this generalized structure 
is noteworthy; accelerated failure time models, such as the log-logistic, are accommodated neatly 
within this family of models characterized by proportionality of conditional hazard functions, 
conditional, that is, on  unmeasured frailty o,for which gamma or inverse Gaussian distribution 
is a usual assumption. 

What further generalization of this structure is practical? Negative correlation, as might obtain 
in respect of alcoholism in families, needs investigation; the link between a generalized accelerated 
failure time model and time variables whose unspecified marginal distributions are related pro- 
portionately t o  two association parameters might be explored. A different tack is t o  consider 
time-dependence of the association parameter, a k .  A step function is the simplest example and 
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could be appropriate when there is some distinction between early and late onset of disease, as 
in diabetes. In litter-matched studies, the strength of association with the unobserved covariate w 
might depend on birth weight or birth order, so that the exchangeability implied by setting ak = 1 
for all k is thwarted. 

Mr Clayton's and Dr Cuzick's paper repays repeated reading-the last paragraph in Section 5.2, 
for example, contains three tests of association between two dependent variables. These are for 
consideration when intra-class correlation is confounded with heterogeneity of frailty, as in 
genetic/environmental controversies. 

The numerical results at the end of the paper do not deal with misspecification of the 
integrated conditional hazard. How robust are the authors' proposed tests? Am I correct in sur- 
mising that all methods, parametric as well as bar-scores, derived from rank order information 
overestimate gamma when sample size is small (less than 100) or censoring heavy (10 t o  50 per 
cent)? More detailed Monte Carlo studies would be instructive. But when the authors have given so 
much, it is ungrateful t o  ask for more! 

Dr R.  Kay (University of Sheffield): It is rare nowadays t o  find a paper in survival analysis 
that is innovative. This however, I'm pleased t o  say, is an exception and Mr Clayton and Dr Cuzick 
are t o  be congratulated on  producing such a novel approach t o  the analysis of bivariate survival 
data. Some questions, however, remain t o  be answered particularly in relation t o  the interpretation 
of analyses based on  these techniques. The authors mention in the introduction several examples 
of bivariate data which may lend themselves t o  this kind of correlation analysis. One such example 
(". . . in cancer trials it is of interest t o  know if the interval from remission t o  relapse influences 
the subsequent interval from relapse t o  death.") concerns the dependence of an inter-event time 
on  another inter-event time in a stochastic process. Problems of this type have already been 
tackled using proportional hazard models with inter-event times for preceding events included 
in the covariate vector of the model. 

References are Aalen et  al. (1980), Kalbfleisch and Prentice (1980) Section 7.3 and Kay 
(1982), (1984). For  example suppose z l  is the time for remission t o  relapse and z2 is the time 
from relapse to  death. The proportional hazards model assumes that the hazard function for z2 
for a patient with covariate vector x is 

Alternative definitions of the time origin are possible. 
Partial likelihood (Cox, 1975) methods produce estimates of a and and a large sample test 

of Ho : a = 0 (no association) is easily produced. Such models are straightforward t o  interpret and 
can be fitted very easily using standard survival data programs such as BMDP2. What is the 
connection between this approach and that proposed by Cuzick and Clayton? Similar methods, 
which involve modelling in terms of one time scale while including alternative time scales in the 
proportional hazards covariate vector, have been used in a wider context by Farewell and Cox 
(1 979). 

Professors Ross L. Prentice and Steven G .  Self (Fred Hutchinson Cancer Research Center, 
Seattle, Washington, USA): We are pleased to comment on  topics related to  this interesting paper. 
First we would like to  note that a score test for independence of the bivariate failure times can be 
derived from the authors' expressions Xk(t I w), k = 1 ,  2 at the beginning of Section 2 without 
introducing the additional assumptions of their bivariate proportional hazards model (i.e, without 
assuming w to  have a log gamma distribution). Specifically, without loss of generality we may 
assume the frailty w t o  have mean zero and variance 0 2 .Denote e = wo-' and suppose that w has 
density f. A score test for independence can now be written 

= ' a2 log L 
lim a log L / ~ U ~lim 

0.10 ?-ao2-'0 4 0  


where L is the marginal likelihood function 
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and where Rk( t )  denotes the sample k risk set at time t ,  k = 1, 2. Straightforward calculations 
show this score statistic to  be proportional to  

where 

and nkj is the size of the sample k risk set at X i .  This is the same score statistic alluded t o  in 
Section 3.  Simple counting process arguments yield 

as a variance estimator for T under quite general censorship. 
The same approach can be used to generate a score test of independence in the presence of 

additional covariates, and an appropriate variance estimator can be developed. In general the 
additional assumptiofi of equality of frailty coefficients (al = a 2 )  is required to  eliminate a 
dependence of the standardized score test on { a l ,  a 2  ). 

In the presence of dependence between T I  and T2 the authors propose simultaneous esti- 
mation of their association parameter y (Section 4) or simultaneous estimation of y and 
regression parameters (Section 5)  within the context of their rather specialized bivariate model. 
A rather more empirical and more flexible approach would directly model the dependence of the 
failure rate for subject (k, i) at time t on  the preceding failure time history for both members of 
the ith pair. Assuming independent censorship and independent pairs of failure times the intensity 
process for subject (k, i) can be written 

hki(t) = Yki(t) hk{t 1 Zji, Nji(u-), Yii(u), u < t ,  j = 1,  2 )  

where Yki(t) = 1 if subject (k, i) is at risk at time t and equals zero otherwise, while Nki is the 
failure time counting process for subject (k,  i). As a simple example, one may specify a relative 
risk type model 

hk { t  I zji, Nji (u-),  Yji(u), u < t ,  j = 1, 2 )  = hok(t) exp {zkiPk + Nli(t-) y k ) ,  k = 1 ,  2 ;  2 f k.  

This model specifies a hazard rate hok(t) exp {zkiPi) for subject (k,  i) up t o  the time of failure of 
the other pair member, a t  which time the hazard rate becomes ho(t)  exp {zkiflk) eYk. Standard 
partial likelihood methods can be used both for testing independence of failure time pairs 
(yl  = y2  = 0)  and for regression parameter estimation in the presence of association. This method 
would readily extend more complex relative risk models with time-dependent covariates and non- 
proportional dependencies on Nli(t-). Note, however, that some modification of the (k, i) 
intensity model would likely be appropriate at times after the corresponding Tf ( l#  k )  has been 
censored. 

We would be interested in the authors' views of these alternatives t o  their proposals. 

Dr Philip Hougaard (Novo Research Institute, Bagsvaerd, Denmark): First I would like t o  
thank the authors for this stimulating paper containing many ideas which hopefully will be 
followed up in the future. However, I don't think that the assumption of gamma distributed 
frailties is convenient in the multivariate situation with covariates. As the authors describe in  
Section 5.2 the association is confounded to population heterogeneity. This means that the joint 
distribution of ( T I ,  T 2 )  can be identified from the marginal distributions and thus the association 
parameter describes more than just association. This problem is present for all frailty distributions 
with finite mean. Instead one can assume that the frailties follow a (standardized) positive stable 
distribution with index cr E (0.1 ] given by the Laplace transform E exp (- sX) = exp (- sff). 
Some results about these distributions are in Hougaard (1984), which considers frailty 
distributions from a three-parameter family containing the positive stable distributions, the gamma 
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distributions and the inverse Gaussian distributions. With a positive stable distribution the formula 
corresponding t o  that in Theorem 1 in Section 2 becomes 

Expression (6.1) describes a model, where conditionally on  the a ' s  the hazards are proportional 
with factors exp {PT(z2 -Z1 ) + a2-a1). With gamma distributed frailties the hazard ratios 
in  the marginal distributions converge t o  1,  but with a positive stable distribution the hazards in 
the marginal distributions are proportional with factors exp { d T ( z 2  - Z 1 ) ) .  A paper on  how 
the positive stable distributions can be applied to  multivariate life-tables is in preparation. 

The authors replied later, in writing, as follows. 

We would like to  thank the discussants for their contributions which raise several interesting 
and important points. Several contributions deal with related issues and we shall first deal with 
these more general ideas before answering more specific points. 

Professor Armitage draws an analogy with correlation and regression in the bivariate normal 
case, and similar ideas are implicit in the contributions of Drs Whitehead and Kay and that of 
Professors Prentice and Self. Dr Kay refers t o  the case where we are primarily interested in the 
regression of t2 on  t l ,  but,  importantly, t l  is uncensored. In such a case we have no need for a 
bivariate model and,  as Dr Kay notes, we may use a variant of the proportional hazards model t o  
describe the distribution of t2 conditional upon t l .  However the problems with which we are 
mainly concerned involve right censored observations of t l  and,  as in any problem in which 
covariates are imperfectly measured, it becomes necessaryT t o  adopt a bivariate model. 
Dr Whitehead makes an interesting attempt t o  avoid this necessity by introducing the censored 
covariate, t l ,  as two covariates-the last observed age and the censoring indicator. However, 
this introduces two parameters t o  describe the relationship and there is some difficulty in their 
interpretation. When t l  is heavily censored the censoring indicator contains most of the 
information relevant t o  the relationship between t l  and t 2 ,  but when t l  is uncensored we have 
the situation described by Dr Kay where the observed values of t l  contain the information. In 
intermediate cases, both P1 and p2 measure the association and it is not clear how one might 
interpret them. It must be conceded, though, that if we are not primarily interested in the effect 
o f  t l  but wish only to  account for its effect when investigating other factors in a regression 
analysis for t2  then Dr Whitehead's suggestion is attractive and simple. 

If we must consider a bivariate model, then it is clearly desirable that the model we choose 
has a regression interpretation. Indeed, this was one of the motivating considerations set out by 
Clayton (1978) when first proposing the model discussed in our paper. Similar considerations 
have been discussed by Cox and Oakes (1984, Chapter 10). The regression interpretation of the 
model is essentially contained in the relationship 

From our Theorem 1 ,  the hazard function for tz conditional upon ( t l  , d l  ) may be represented 
in terms of the marginal hazard and integrated hazard functions by 

T h e  middle term depends upon t2 so that this is not,  in general, a proportional hazards model. 
Incidentally, this term represents the factor by which the marginal hazard, h 2 ( t 2 ) ,  is reduced by 
removal of frail individuals (by deleting those with small T1 values). This is the factor about which 
Professor Armitage enquires; for constant t l  it attains its minimum value at t2  = 0 and increases 
monotonically t o  unity as t2 increases to  infinity. Thus, equation (1) is a convergent hazards 
model. However, in  the epidemiological situations which motivated the model, Al ( t l )  and A 2 ( t 2 )  
are both small and this term may be closely approximated by exp -yAl  ( t l ) .  In these circum- 
stances, (1) may be approximated by the proportional hazards model 

Note that,  if A l  i t l )  is linear in t l ,  we obtain Dr Whitehead's model. 

Other approaches involve the assumption of different bivariate models. There are, of course, 
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several possible models with attractive features. It is not clear to  us why the model discussed by 
Professors Prentice and Self is "more empirical and more flexible" than ours or,  indeed, any less 
specialized. The model they advocate is essentially a generalization of the bivariate exponential 
distribution of Freund (Freund, 196 1 ; Johnson and Kotz, 1972) and does seem more appropriate 
in situations in which the occurrence of one event directly influences a related failure process. 
However, in other situations, this model is distinctly unattractive. For  example, in the context of 
familial association of disease incidence, the Freund model would predict that a son's hazard 
function would follow one curve up t o  the age at which his father contracted the disease and 
then jump to another curve at a higher level of risk. This hardly seems biologically plausible. Also, 
the problem of right censoring of the covariate (father's age at  failure) is unresolved since after 
the age of loss t o  follow-up of the father, it is not known which hazard curve the son is following. 
This raises a problem akin t o  the assumption of a two-point frailty distribution and its solution 
would probably require an EM approach along similar lines t o  that which we have proposed. 

We were most interested in the alternative bivariate model proposed by Dr Hougaard. This 
distribution has been described before (Johnson and Kotz, 1972) and has been termed a 
"bivariate extreme value distribution", but its interpretation as a heterogeneous frailty model in 
which the proportional hazards model for covariates is not destroyed in the margins is both 
original and important. We do not have any intuition as t o  the plausibility of the positive stable 
distributions for frailty and some sketches for realistic values of a would be of interest. Against 
this model it can be said that no regression interpretation similar t o  that discussed above seems t o  
be available. Also, as Dr Gore has pointed out ,  the destruction of the proportional hazards model 
by the gamma frailty assumption is interesting and potentially useful in its own right. The semi- 
parametric Pareto regression model described in Section 5.2 may be regarded as a super-model 
which includes both proportional hazards and proportional odds models as special cases. 

Dr Gore also raises some questions concerning the possible extension of our model. Certainly 
its inability t o  model negative association is a limitation. Such association might arise as a result 
of competition and might be approached by a model in which the logarithm of frailities (or some 
other transform of frailties) sum t o  a constant value within a family. The possibility of time- 
dependent frailty effects is interesting as are further "interaction" generalizations such as random 
susceptibilities to  fixed covariates. Much remains to  be done before we obtain a fully generalized 
proportional hazards model with a variety of fixed and random effects. The search for such a 
model is difficult owing to the difficulty, t o  which Professor Aitkin draws attention, in finding 
more general frailty distributions with sufficiently convenient analytical properties. We have 
carried out further work on the multivariate gamma frailty model t o  which we refer in our paper 
and would hope to present this work soon. It does not however offer solutions to  all the problems 
described above, and one is hopeful that the work referenced by Dr Hougaard will lead t o  further 
generalizations. 

We now move on t o  discuss the points concerning our method of estimation. Professor Gill 
is quite right to  draw attention t o  the need for further more rigorous work. Although we have 
more recently developed a new approach t o  the calculation of scores which more formally justifies 
method 2 of this paper, the total problem remains difficult. Dr Pettitt and Professor Gill both 
note that our computation of bar-bar scores is akin t o  estimation of the baseline hazard functions 
A! and A:. We would agree with Dr Pettitt that these functions are of considerable interest in 
making predictions from the model; indeed our discussion of the regression interpretation of the 
model clearly demonstrates the need for knowledge of the form of these functions. We made 
reference in the paper t o  the fact that estimation of A! by step functions with discontinuities 
at the observed failure times (as suggested by Breslow for the proportional hazards model) leads 
t o  our method with scores calculated by method 2. Indeed, between ourselves we have been 
referring t o  these scores as "Breslow scores". We are grateful t o  Professor Gill for a more formal 
description of our model within the counting process framework. However, as he states, the 
justification of asymptotic properties using this approach also remains, for the present, heuristic. 
We would join him in commending the problem t o  other workers. 

Professor Gill's remarks also suggest a line of argument which clarifies our approximate 
likelihood. To  ease the notation we shall consider the univariate regression case of Section 5.2. 
Conditional upon frailities, 5 ,  the parametric kernel L k b ,  0,C;) is a product of exponential 
densities and survivor functions. The marginal likelihood is 
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LM = j  1 L k b ,  P, 8) d G ( t ; ~ )  dy 
Y E R  E 

L k b ,  P, dy dG( t ;  Y) 

where 

The inner term is a partial likelihood and,  using the approach of Johansen (1983), it may be shown 
to be identical to  the maximum with respect to  y ,  y E R  of a total likelihood of the form 
L k b ,  0, t )  J b )  where J b )  is the Jacobian-like term given by the product of the spacings, 
bi-yi-I) ,  of the transformed uncensored times. Thus ,. 

Professor Gill's remarks, together with our note of the equivalence between our method and that 
of Bennett for the special case y = 1, show that our approximation, with method 2 scores, is 
equivalent t o  the use of the approximate likelihood 

L& = max [ \ L x ~ ,  1BIB) d G ( t ;  Y) J b )  
Y E R  t 

This is not identical t o  LM, but our work presented here and later work which more formally 
justifies the method 2 scores (Clayton and Cuzick, 1985a) suggests that it has the usual asymptotic 
properties of a likelihood. 

Professors Prentice and Self repeat our derivation of score tests for association using the 
marginal likelihood argument, but give a different variance estimator from that of Cuzick (1982), 
whose results are also valid for a wide class of error distributions. This latter estimator has also 
been derived by Dabrowska (unpublished) assuming only that the censoring times (C1, C 2 )  are 
independent of the failure times ( T I ,  T 2 )  and of all other sets of ( T I ,  T 2 ,  C1,  C2).  The 
conditions under which the variance estimator proposed by Prentice and Self is more 
appropriate are not clear to  us. We note in passing that the simple counting process arguments 
they invoke only seem useful under the hypothesis of no association. In other cases, it is no longer 
sufficient to  condition simply upon the past and this fact seriously hampers rigorous justification 
of the asymptotic properties of estimators. 

Professor Aitkin suggests an alternative semi-parametric approach to such problems without 
our arbitrary monotone transformation but with an arbitrary frailty distribution. Although an 
interesting possibility, it is unlikely that this model is sufficiently flexible for the applications we 
envisage. For  example, all mixtures of exponential distributions have decreasing hazard. Thus, 
a free choice of frailty distribution leads to  a very restricted set of marginal failure time distri- 
butions. An interesting possibility is t o  allow both arbitrary monotone transformation of times 
and arbitrary frailty distribution. Then our method 2 would become a quasi-EM algorithm in 
which the unknown frailties are replaced by non-parametric empirical Bayes estimates at each 
E-step. The theoretical complications of this generalization would appear formidable, however, 
even in the simple regression case of Section 5.2. 

Finally we must apologise if the above remarks do not answer all the points made by the 
discussants, for which we are most grateful. In particular we must thank Dr Gore for so eloquently 
reminding us of our debt to  the organisers of that Oberwolfach meeting. 
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