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A Monte Carlo Method for Bayesian Inference 
in Frailty Models 

David G. Clayton* 

Department of Community Health, University of Leicester, United Kingdom 

Many analyses in epidemiological and prognostic studies and in studies of event history data require 
methods that allow for unobserved covariates or "frailties." Clayton and Cuzick (1985, Journal of the 
Royal Statistical Society, Series A 148, 82- 117) proposed a generalization of the proportional hazards 
model that implemented such random effects, but the proof of the asymptotic properties of the method 
remains elusive, and practical experience suggests that the likelihoods may be markedly nonquadratic. This 
paper sets out a Bayesian representation of the model in the spirit of Kalbfleisch (1978, Journal of the 
Royal Statistical Society, Series B 40, 214-221) and discusses inference using Monte Carlo methods. 

1. Introduction 

The last two decades have seen major advances in methods for the statistical analysis of 
occurrence data. This development has been of considerable value in the analysis of clinical 
trials, and has done much to clarify the mathematical basis of epidemiological studies and 
analysis. Increasingly, the methods are being applied in other settings, and recently attention has 
turned to the analysis of more complicated Markov and semi-Markov models for event history 
data. Extension of Cox's (1972) pioneering work on the proportional hazards model for survival 
data to more general problems of modelling counting processes has brought advances in the 
analysis of such data, at least in theory (Aalen et al.,  1980). However, the utility of this 
approach in practice is limited by the assumption of independence of transitional events 
conditional upon covariates-an assumption that will almost always be untrue owing to an 
inability to measure all relevant variables. Thus, patients who are particularly at risk from one 
type of state transition may also tend to be prone to another, even after conditioning upon 
covariates. 

In epidemiology, problems of related events arise in family studies of disease incidence. There 
may be a tendency for disease occurrence to cluster within families, either because of shared 
environmental exposures or because of genetic predisposition. In animal carcinogenesis experi- 
ments, litter-matched designs are often employed in an attempt to control for genetic factors. In 
all these examples there is a need to introduce an extra random component into the proportional 
hazards model. In the first and third areas described above, this is required only to achieve 
correct inference on fixed effects of interest, whereas in the second case the random family 
effect itself is of prime interest in the analysis. Such models have attracted increasing attention in 
recent years and are often referred to as "frailty" models. However, they pose considerable 
theoretical difficulties. This paper suggests a Monte Carlo approach suggested by a Bayesian 
casting of the problem. 

"Present address: Medical Research Council Biostatistics Unit, 5 Shaftesbury Road, Cambridge CB2 
2BW, United Kingdom. 
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Genetic epidemiology; Gibbs sampling; Monte Carlo methods; Multiplicative intensity model; 
Proportional hazards model; Stochastic substitution; Survival analysis. 
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Section 2 briefly reviews frequentist approaches to inference in the proportional hazard 
model, and introduces some notation. Section 3 sets out a Bayesian approach to the proportional 
hazards model. Section 4 reviews the random frailty model of Clayton and Cuzick (1985a) and 
Section 5 discusses their proposed method of estimation and some alternative computational 
algorithms. Section 6 describes the Bayesian formulation of the frailty model as a graphical 
model and Section 7 discusses the Monte Carlo method of inference. Finally, the method is 
demonstrated using data derived from an animal carcinogenesis experiment. 

2. Frequentist Inference in the Proportional Hazards Model 

The proportional hazards model for survival data, introduced by Cox (1972), describes the 
hazard function for an individual characterised by covariate vector z by the product 

where A,,,, the baseline hazard function, is modelled nonparametrically. Extensions to this 
basic model allow alternative parametric relative risk models for the second term of the 
product, which may also depend on time, either because of variation of time-dependent 
covariates or because covariates have time-dependent effects. Kalbfleisch and Prentice (1980) 
also introduced the extension in which a different baseline hazard function could be fitted in each 
of several strata. 

In later work, the proportional hazards model for survival data has increasingly been seen as a 
special case of a multiplicative intensity model for counting processes which generalizes that 
of Aalen (1978). If I,(t) is the intensity process for a counting process labelled by covariate 
vector z ,  it is modelled by 

the product of an observed process, Y(t) ,  a baseline intensity process to be modelled nonpara- 
metrically, Io ( t ) ,  and a (usually log-linear) parametric relative risk model for the effect of 
covariates. For a nontechnical review of this approach, see Gill (1984). 

Owing to unwillingness to make detaiied assumptions concerning censoring processes, most 
published work has focussed upon asymptotic inference with this model. Here, the really fruitful 
approach has been that of part ial  likelihood as originally proposed by Cox. Although 
seemingly based on standard likelihood results, it is now well known that partial likelihood is 
misnamed and is not, in fact, a likelihood of any sort. The proof that maximuin partial likelihood 
estimators for the parameters. P, of the regression model have the same asymptotic properties as 
maxinlum likelihood estimators follows elegantly by applying martingale theorems in the 
counting process framework (Andersen and Gill, 1982). 

Earlier approaches to justifying the idea of partial likelihood included that of Kalbfleisch and 
Prentice (1973), who pointed out that, with the assumption of progressive Type I1 censoring 
and in the absence of ties, partial likelihood is equivalent to the marginal likelihood based on a 
generalized rank vector for (censored) survival times. 

Several authors, notably Breslow (1974) and Johansen (1983), have pointed out that (again in 
the absence of ties) partial likelihood inay be viewed as a profile likelihood in which the 
unknown nuisance function, & ( t ) [or I,(t)], is replaced in the total likelihood by a nonparamet- 
ric maximum likelihood estimate. In the counting process formulation (2.2), for known /3 the 
intensities for the observed counting processes are products of the unknown process, I,(t), and 
observed processes. The nonparametric maximum likelihood estimate of the (integrated) un- 
known process is given by the Aalen estimator (Aalen, 1978). For right-censored survival data 
in the absence of covariates this estimator is identical to the nonparametric estimator for the 
integrated hazard function introduced by Nelson (1969) and (independently) by Altshuler (1970). 
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For Cox's model for survival data with covariates, the Aalen estimator is equivalent to that 
proposed by Breslow (1974) for the integrated baseline hazard function: 

Substitution of the expression for the maximum likelihood estimate of this function (which itself 
depends on 6 )  into the total likelihood yields the partial likelihood. 

To introduce some notation for later sections, let N,(t)  be the process that counts observed 
failure of the ith study subject [so that N,(t)  takes the value 0 until the observation of failure and 
1 thereafter] and let Y,(t) indicate observation of the subject at t (taking the value 1 if the 
subject is observed and 0 otherwise). Then the intensity process for N,(t)  is 

Under noninformative censoring the likelihood factorizes, with one term depending only on 
the censoring process and the second term: 

This is essentially Poisson in form, reflecting the fact that the likelihood may be thought of as 
generated by independent contributions of many data "atoms," each concerned with observation 
of an individual over a very short interval during which the intensity may be regarded as 
constant (for a review of event history analysis from this standpoint, see Clayton, 1988). 
Introducing the further shorthand 

the Aalen estimator for A,(t) is 

(where the + subscript denotes summation over i ) ,  and substitution of (2.6) into (2.4) yields the 
familiar partial likelihood: 

This discussion assumes no ties of observed failure or censoring times, and this is also true of 
the Bayesian approach described below. The occurrence of ties is awkward both theoretically 
and cornputationally and this paper will assume that observations are made with sufficient 
precision to preclude ties. 

3, Bayesian Approaches 

Several authors have discussed Bayesian inference for such models (Cornfield and Detre, 1977; 
Kalbfleisch and MacKay, 1978; Kalbfleisch, 1978; Kalbfleisch and Prentice, 1980). Kalbfleisch 
(1978) proposed a Bayesian argument that degenerates into partial likelihood theory with suitable 
choice of vague priors. This approach is nonparametric with respect to A, and is summarised 
below. In the interests of clarity, no attempt will be made to deal with the measure-theoretic 
difficulties arising out of the fact that A, lies in an infinite-dimensional space. Kalbfleisch dealt 
with this problem by assuming measurements to have been made on a fine time grid, so that the 
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unknown function A, is a vector with a large but finite number of elements. This also makes for 
some complications, and the argument below lets the time grid interval approach zero. 

Kalbfleisch assumed that each component of P has the improper uniform prior on [ -a,+ m], 

and that the prior for A, is a process with 

E [ A , ( ~ ) ]= A"(t) ,  a known function, 

and the increments dA,(t) are distributed as independent gamma variates with shape and scale 
parameters cdA*(t) and c, respectively. That is, 

For this process, any difference A,(ti) - A,(t,) ( t ,  > to) is also a gamma variate. 
Kalbfleisch pointed out that the independent-increments prior for A, is not a very satisfactory 

representation of prior beliefs about baseline hazard functions. However, it is adequate when the 
main interest is in the regression parameters 0 ,  and has the virtue of being the conjugate prior 
for the total likelihood for censored survival data and, more generally, for counting processes. 
Thus, conditional upon P ,  the posterior for A, is another independent-increments gamma 
process with 

d ~ , ( t )- ~ ( c d ~ * ( t )  ( t )  , c + R+( t ;  P ) ) ,  + d ~ +  (3.1) 

so that 

and 

v a r [ ~ , ( t ) ]= ,/"' C 
,d**ju) + / '  

1 
2 d ~ + ( u ) .  (3.3) 

. 0 [ c + R + ( u ;  P) ] - [ c  + ~ + ( u ;0 P)]  

Note that, for this process, the differences A,(t,) - A,(f,) are not, in general, gamma variates. 
Since R + ( t )  is a step function, they are distributed as sums of gamma variates with different 
scale factors. 

The Bayes estimator of A, (given P) is the posterior expectation, (3.2), and is a "shrinkage" 
estimator that effects a compromise between the Aalen (maximum likelihood) estimate and the 
prior mean, A". When c is large, the prior belief in A* is strong and the estimate approaches 
this function, whereas, when c is small, the prior belief is weak and the estimate approaches the 
Aalen estimate. It is assumed in this approach that the scientist can supply a value of c to 
represent the strength of prior belief. 

The marginal posterior distribution for is given by integrating the joint posterior over A, 
and is proportional to 

With the improper vague prior for A, defined by c = 0, the posterior for P is proportional to 
the partial likelihood. When c -+ m, so that A, is known a priori, the analysis reduces to a 
log-linear exponential/Poisson regression analysis with likelihood as if the censoring indicators 
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were Poisson variates with expectations 

There is little difficulty in principle in extending this argument to most of the extensions of the 
proportional hazards model. For time-dependent covariate or time-dependent effect models 
things become difficult because R + ( t )  is no longer a step function and the posterior process for 
A, becomes intractable except when c = 0.  This is not surprising: it is the parametric 
component for the model for A, that causes the difficulty, and fully parametric models with 
time-dependent covariates or effects lead to difficulties for all approaches. 

More recently, Gamerman and West (1987) have considered a "dynamic" model in which the 
regression coefficients, p ,  are allowed to vary with time. They divide the time scale into discrete 
intervals and model hazard by step functions. The priors for the step heights in the baseline 
hazard and for the values of P are taken as first-order autoregressive processes. 

4. Frailty Models 

Motivated by epidemiological studies of disease occurrence in families, litter-matched carcino- 
genesis experiments, and by studies of sojourn times of the same individual in different states in 
prognostic studies, Clayton and Cuzick (1985a) introduced a further generalization of the 
proportional hazards model that allowed for positive association of survival times. This model is 
a semiparametric generalization of other work that allowed for a random effect, or "frailty," in 
the hazard model (see, for example, Vaupel, Manton, and Stallard, 1979; Lancaster and Nickel, 
1980). Using the language of animal experimentation, the hazard function for an animal from 
litter I with covariate vector z is 

where { El) are random multiplicative effects, or "frailties," shared by all members of the same 
litter. The frailties are assumed to be i.i.d. gamma variates with mean 1 and variance y.That is, 

Clayton and Cuzick also considered a "stratified" form of the model that allowed for several 
different baseline hazard functions. Thus, in family studies, different baseline hazard functions 
may be assumed for fathers and for sons. 

The choice of the gamma distribution for frailties arises partly for mathematical convenience 
(since this distribution is conjugate to the likelihood for { t , ) )  and partly because, in the case of 
bivariate survival without covariates, integration over the unknown frailty yields a class of 
bivariate survival time distributions with appealing properties (Clayton, 1978; Cox and Oakes, 
1984). This choice has some less desirable consequences, however. The marginal relationship 
between hazard and covariates no longer follows the proportional hazards model; instead there is 
convergence of hazards, at a rate determined by y .  Clayton and Cuzick (1986) exploit this fact 
in a univariate semiparametric survival model. In the multivariate case with covariates this 
property has the consequence that information for estimation of y comes partly from the 
coincidence of failure within families, and partly from marginal convergence of hazards in 
relation to covariates. Hougaard (1986a, 1986b) has pointed out that this is not a desirable 
property for the multivariate model since it renders interpretation of y difficult, and instead 
showed that the assumption of a positive stable distribution of the { [,) avoids the problem, since 
the proportional hazards assumption for covariates then remains true marginally. While the 
validity of this criticism is accepted, the gamma assumption will continue to be made in this 
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paper since it simplifies the computations somewhat. However, there is nothing in principle to 
prevent the implementation of Hougaard's suggestion in the current approach. A recent review 
and discussion of frailty models for survival data are given by Aalen (1988). 

From the Bayesian standpoint, the random frailty models estimate the unknown frailties under 
the assumption of a priori exchangeability. From this standpoint the frailty variance, y ,  would 
be termed a hyperparameter and prior knowledge concerning its value would be encapsulated 
in a hyperprior distribution. 

5. Clayton and Cuzick's EM algorithm 

With the gamma distributional assumption for frailties. it is simple to integrate over the i t , }  to 
obtain a probability of observed data given P ,  y,and A,. The problem then is to deal with the 
infinite-dimensional nuisance parameter 11,. The idea of partial likelihood does not carry over in 
a simple manner, since the integration over frailties destroys the simple way in which likelihood 
unfolds over time. This in turn means that the usual martingale theory is no longer applicable. 
Instead, Clayton and Cuzick went back to Kalbfleisch and Prentice's (1973) idea of marginal 
likelihood based on generalized rank vectors. With known A,, the (possibly censored) survival 
times, { f,), may be transformed into scores { y ,  = A,(t,)) that obey a simple parametric model 
depending only on the parameters of interest, P and y .  Clayton and Cuzick's proposal was to 
maximize the marginal likelihood of ranks using an EM algorithm. as follows: 

E-step: 
Estimate scores (termed "bar-bar scores") which are expectations of the transformed times, 
( y,} , given p ,  y,and the vector carrying the information about the ranks of the uncensored 
survival times and the censoring pattern. 

M-step: 
Maximize the parametric likelihood for and y given the imputed "data", { y , ) .  

Note that the E-step is in a sense equivalent to the estimation of 11, for known P and y. 
Unfortunately, however, the computation of these expectations is intractable. Clayton and 
Cuzick proposed two approxin~ate scoring algorithms, one of which (their "method 2") was as 
follows: 

El :  With the current estimate of A, (and of P and y ) ,  calculate "imputed frailties," which are 
posterior expectations of ( t ,} . 

E2: Treating the frailties as known, obtain a new estimate of A, using the Aalen-Breslow 
estimate (2.6). This requires a slight extension of the notation (2.5) to include the frailties: 

where / t i)  denotes the litter to which the ith subject belongs. Finally, use this estimate to 
transform the observed times into the new scores. 

Steps E l  and E2 are iterated until convergence. 

Gill (1985) pointed out that, with this approximate scoring method, the algorithm maximizes a 
profile likelihood obtained by nonparametric maximum likelihood estimation of A,, since E2 is 
a maximization step in a subsidiary EM algorithm. If there are L litters, the likelihood that is 
maximized is an L-fold integral of a counting process likelihood of the form of (2.4) with 
respect to the prior distribution of the frailties (,t,). 

The heuristic arguments of Clayton and Cuzick failed to prove that the approximate scores are 
close enough to the correct scores to ensure that the estimators of P and y have the asymptotic 
properties of maximum likelihood (ML) estimators. This remains unproven and is not attempted 
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here. It should also be noted that, in practice, likelihoods are often markedly nonquadratic with 
respect to gamma; indeed they are often monotonically decreasing. In such circumstances 
asymptotic results are unlikely to be useful. Instead, a Bayesian analysis in the spirit of 
Kalbfleisch (1978) is presented. 

Before moving on to the Bayesian version of the model, it is interesting to note that the 
maximization effected in the M-step in the Clayton and Cuzick algorithm above may be achieved 
in a subsidiary EM algorithm, which also involves imputation of frailties. The parametric 
likelihood maximized in this step is that for a model in which, conditional upon the frailties f , 
the transformed (right-censored) times ( y l }  obey an exponential log-linear regression model in 
which the log-frailties are the additive effects of "litter." The gamma distribution of frailties is 
the conjugate prior for this likelihood and the probability distribution may be explicitly 
integrated over the entire range of f to yield a likelihood that depends on y,P ,  and ( y , } .  In 
Clayton and Cuzick (1985a) this likelihood is numerically maximized in each M-step. However, 
this likelihood itself may be regarded as a missing data likelihood in which the frailties f are the 
missing data, and this could be maximized using an EM algorithm with E and M steps as 
follows: 

ME-step: 
1. Estimate the frailties by posterior expectations given data and current values of all other 
parameters (this is equivalent to E l  above). 
2. Estimate the posterior expectation of their sum and of the sum of their logarithms. 

MM-step: 
1. Compute ML estimates of f l  assuming all other parameters to be known. This is an 
exponential regression analysis. 
2. Estimate the parameter, y,of the gamma distribution of frailties by maximum likelihood 
using the quantities calculated in ME2 in place of the usual sufficient statistics for the 
parameters of the gamma distribution. 

With this expansion and some rearrangement the complete algorithm may be written as a 
recursion with the following steps: 

Step (a) (E2): Estimate A, given 6, f . 

Step (b) (MM1): Estimate fl given A,,  f . 

Step (c) (El/MEl): Estimate f given A,,  p ,  and y .  

Step (d) (ME2 and MM2): Estimate y given A, ,  P .  


Alternative iterative methods are possible. For example, from results given by Clayton and 
Cuzick (1985b), it follows that if at each stage steps (a) and (b) are iterated until convergence, 
the effect is to maximize the partial likelihood for the multiplicative intensity model in which the 
frailties are known constants. Thus steps (a) and (b) could be combined: 

Step (ab): 
Estimate p by its maximum partial likelihood estimate assuming f known, and estimate A, 
using the Aalen estimator. 

This variant of the method might be expected to converge faster, since step (ab) maximizes the 
likelihood with respect to both P and A,.  However, each step would involve more computation. 

The algorithms for computing point estimates that have been described in this section are 
relaxation methods involving successive substitution of current estimates into a series of 
estimating equations. Interval estimates are harder to find, however. In the following sections it 
is shown how stochastic relaxation methods, originally developed for problems in Bayesian 
image analysis, can be used in a Monte Carlo method for obtaining Bayes interval estimates with 
this model. 
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6. Bayesian Inference in the Clayton and Cuzick Model 

The model (4.1) and (4.2) is already a hierarchical model. To specify it as a fully Bayesian 
hierarchical model it is necessary only to specify priors for the parameters A, and P and for the 
hyperparameter y.It would also be possible to introduce hierarchical modelling for both A, and 
p but that is not attempted here. Since the aim is to extend the approach of Kalbfleisch (1978), 
the priors described in Section 3 will be adopted, together with the assumption that y-' has, a 
priori, a G(7,  p) distribution. For the usual vague improper prior for a variance, we take 
p = r = O .  

A graphical representation of the model will prove useful in the next section, and Figure 1 
shows the model represented by a directed acyclic graph connecting the hyperparameters, the 
parameters, and the observed data. In the Bayesian formulation all these are random variables 
and the directed graph represents a conditional argument for parameters conditional upon 
hyperparameters and for data conditional upon parameters. Such a set of relationships may also 
be represented by a conditional independence graph, which is an undirected graph constructed 
so that if two variables, U and V, are connected only via a third variable W, then U and V are 
conditionally independent given W. This graph is sometimes termed the moral graph since its 
structure may be deduced from the directed graph by a process of "marrying the parents": if U 
and V both have directed links to W in the directed graph, then U and V must be joined in the 
(undirected) conditional independence graph. Applying this process to the directed graph for the 
frailty model, Figure 1, yields the conditional independence graph shown in Figure 2. This 
shows, for example, that, conditional upon the frailties E ,  the hyperparameter y is independent 
of p ,  A, ,  and the observed data. 

The graphical representation of multivariate distributions is well known in connection with 
models for high-dimensional contingency tables (Wermuth and Lauritzen, 1983) and for 
Bayesian inference in expert systems (Lauritzen and Spiegelhalter, 1988). Graph theory is also 
important in the theory of Markov random fields, which are of considerable importance in 
statistical mechanics and, more recently. in spatial statistics and image analysis. This theory, 
reviewed by Geman and Geman (1984), shows that the algebraic representation of the multivari- 
ate distribution represented by a conditional independence graph follows from the graph 
structure; more specifically, it depends on the set of cliques that make up the graph, a clique 
being a set of nodes in which all pairs are connected. The joint distribution corresponding to a 
given conditional independence graph is proportional to exp(- E), where E is the energy 
function which is a sum, over all cliques (c), of potentials PC,where each potential is a 
function depending only on the variables contained in the corresponding clique. Such a 
distribution is a Gibbs distribution. 

Hyperparameter  

Parameters  

Figure 1. Directed graphical representation of the Bayesian frailty model. 
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Figure 2. Conditional independence graph for the Bayesian frailty model. 

The Bayesian model described above and illustrated in Figures 1 and 2 defines a Gibbs 
distribution with cliques (A,, P ,  4 ,  Data) and ( 4 ,  y ) .  The joint probability distribution of the 
system is proportional to the product of the hyperprior for y ,  the priors for 4 ,  P ,  and A,, and 
the probability for the data given the multiplicative intensity model [i.e., the likelihood (2.4)]. 
Bayesian statistical inference requires computation of joint and marginal posterior distributions 
of the parameters and hyperparameters given the data. Unfortunately these are intractable, but 
the conditional distributions are relatively simple. In the next section it will be shown how this 
may be exploited in a Monte Carlo method for sampling the posterior distribution of the 
parameters and hyperparameters. 

Denoting conditional probability density distributions by the shorthand notation [ . . . I . . . 1, 
the conditional distributions corresponding to the graph of Figure 2 are 

[A0 1 P, 4,  Data]: 
An independent-increments gamma process described by (3.1) -(3.3), with R , ( t;P) redefined 
as in (5.1). 

[P 1 4 ,  A,, Data]: 
Proportional to the likelihood for the parameters of a log-linear Poisson or censored 
exponential regression model. For moderate sample sizes this can be closely approximated by 
a Gaussian distribution by matching derivatives at the mode. The calculations involved are the 
same as for maximum likelihood estimation using the Newton-Raphson method or the 
(equivalent) iteratively reweighted least squares algorithm as used in the GLIM computer 
program. 

[ 4  l Ao,P, Y, Data]: 
Conditionally independent gamma variates. l ,  is distributed as G(D,  + y - ' ,  E, + y p l ) ,  
where D, is the number of observed failures in the Ith litter and 

El = 1 q( t )exp(PTzi)  dA,t 
islitter I , t >0 

[Y 141: 
v = y-I  is distributed with density proportional to 

vLu+?-l -p!J 

e"(logP - S )  

[r(v)lL 
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where L is the number of litters, S is the sum of the i t , ) , and P is their product. This 
expression is derived by multiplying the prior distribution for v [a gamma distribution, 
G(q,e)] by the probability of sampling { t , ,I = 1, . . . , L) from a gamma distribution with 
mean 1 and variance y = v-'. 

7. Stochastic Relaxation and Gibbs Sampling 

This section describes a Monte Carlo method for generating samples from the joint posterior 
distribution of the parameters of the model. At first sight the method seems to be closely related 
to "bootstrap" methods for interval estimation, but there are important differences. Whereas in 
a frequentist representation of the problem the unknown parameters are regarded as fixed 
constants and the data values are random variables, the Bayesian analysis reverses the status of 
data and parameters: the data are fixed constants and the parameters are random variables. The 
frequentist bootstrap regenerates multiple sets of data and reanalyses each bootstrapped data set 
in an attempt to explore estimation errors. In contrast, a Monte Carlo Bayesian approach holds 
the observed data constant, and samples repeatedly from the posterior distribution of parameters 
given data. 

Recently a number of authors have drawn attention to methods for sampling multivariate joint 
and marginal posterior distributions when only conditional distributions are available. The 
common feature of these methods is that the sampling is carried out by a stochastic process 
whose equilibrium distribution is that required. The idea has its roots in the Metropolis 
algorithm of statistical mechanics but its wider relevance seems first to have been pointed out by 
Hastings (1970). It has remained largely unknown except in applications in spatial statistics 
involving Markov random field models (Ripley, 1977). The recent recognition of its widespread 
applicability for Bayesian statistical inference follows the imaginative work of Geman and 
Geman (1984) in Bayesian image analysis. A comprehensive review of this and other Monte 
Carlo methods for sampling posterior densities is given by Gelfand and Smith (1990) and their 
application in a range of Bayesian analyses with Gaussian assumptions is illustrated by Gelfand 
et al. (1990). 

Consider the case of two (possibly vector-valued) random variables, U and V, when we wish 
to draw a sample from the unavailable joint distribution [ u ,  u]. However, the conditional 
distributions [ u  I u] and [u 1 u] are known. If we can sample V from the marginal [u], and then 
sample U - [ u  u = V], then the pair (U, V) is a sample from [ u ,  u]. Conversely, if we could 
sample U - [u ]  we would be able to proceed to sample V - [u I u = U],  thus again obtaining 
a sample (U, V) - [ u ,  u]. Argument by analogy with relaxation methods for the solution of 
linear simultaneous equations suggests a stochastic substitution method in which, starting from 
(UO,  v O ) ,  we generate a sequence (U' ,  V'), i = 1 , 2 ,  . . . as follows: 

Step i(a): Generate U' - [ u  u = v'- '1. 

Step i(b): Generate v /" - [ v  u = u']. 

Using theorems reviewed by Gelfand and Smith, it may be shown under rather weak conditions 
that the sequence, which is Markovian, converges to an equilibrium distribution which is the 
joint distribution [ u ,  u]. In the simplest case we might be interested only in the marginal 
distribution of U and here we note that the sequence U O ,  u ' ,  U2 ,  . . . is a Markov process with 
transition function 

An important condition for the success of the method is that the transition function should be 
strictly positive. If it is ever zero then an absorbing state is reached and further sampling is 
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precluded. In practice there may be difficulties if there are regions in which the transition 
probabilities are very small, since many attempts at escape may be necessary. 

In applications in Bayesian statistics, U and V may represent two sets of parameters and the 
required posterior distributions are conditional upon the observed data. A simple case is the 
three-level hierarchical model in which the distribution of data depends on a large number of 
parameters, U, which themselves have a distribution with hyperparameters V . For example, U 
may be a vector of location parameters for the distributions of observed data points and V may 
define the prior mean and variance of the elements of U. Sampling the joint posterior of 
parameters and hyperparameters by stochastic substitution is straightforward but runs into a 
serious difficulty in that there is an absorbing state in which all elements of U are equal and the 
element of V corresponding to the prior variance is zero. The algorithm cannot recover from 
this state and, perhaps just as seriously, may take a very long time to escape from the region of 
very small prior variance. In practice, therefore, the absorbing range of values for the variance 
hyperparameter is rather larger than the single value zero, and there is a finite probability of 
reaching this region. Indeed, experience suggests that the process will frequently reach this state 
quite quickly unless steps are taken to prevent it from doing so. A related difficulty is that there 
may be very strong autocorrelation and cross-correlation in the sequences, particularly for 
variance hyperparameters. 

One solution to this problem is to adopt a prior distribution that renders impossible variances 
smaller than a certain limit. This prevents absorption, but the process may still become stuck in a 
region of small variance for a considerable period and the sequence of samples may show 
substantial autocorrelation. If we require a set of independent samples, this necessitates 
discarding the samples intermediate between those used to estimate the distributions. This 
increases the computation time, perhaps by many times. Hastings (1970) pointed out that, in 
order to estimate expectations of functions of the random variables by the arithmetic mean of the 
sampled values, the sample points are not required to be independent. However, in the presence 
of autocorrelation, a larger number of samples will be required for accurate estimation. 

An alternative strategy is suggested by the work of Tanner and Wong (1987),who proposed a 
method for Monte Carlo estimation of posterior distributions that was inspired by the EM 
algorithm and which they termed the IP (imputation-posterior) algorithm. This turns out to be 
very closely related to the simple Markov method outlined above. The samples, ( U ' ,  V ' ) ,  are 
generated in blocks of size B and the algorithm to generate the ith sample in each block is as 
follows: 

Step i(a): Sample V" at random from the values obtained in the previous block. 

Step i(b): Sample U' - [ u  u = v"]. 
Stepi(c): Sample V ' - [ u l u  = U ' ]  

This method leads to independent samples within blocks. Tanner and Wong suggest that the 
block size, B ,  should be chosen adaptively, starting with a small value and increasing gradually 
to the required sample size. 

Although this method is effective in reducing autocorrelation, it is costly in terms of discarded 
samples and slightly cumberson~e to program. A convenient compromise involves using a stack 
to store the last B values of V , and starts the ith step by sampling at random from this stack. 
This buffered stochastic substitution algorithm is identical to the IP algorithm except that the 
sampled values are no longer blocked and the first step for the generation of the ith sample 
becomes 

~ i - EStep i(a): Sample V "  at random from V 1 -', v ' - 2  , . . .  

Small values of B are ineffective in reducing autocorrelation and protecting against absorption, 
but large values of B slow convergence to the equilibrium distribution. It seems sensible to 
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increase B during sampling in the same way as was suggested by Tanner and Wong, but it is not 
necessary to increase B to the eventual sample size. Experience suggests that a quite modest 
stack size will effectively eliminate autocorrelation. Given routines to manage and randomly 
sample a push-down stack, addition of buffering to the simple stochastic substitution is a trivial 
programming exercise. 

For more than two sets of variables, the basic idea of stochastic substitution may be extended 
in various ways according to the availability of conditional distributions. The simplest and most 
attractive is the Gibbs sampler algorithm of Geman and Geman (1984), which generates 
random samples from the Gibbs distributions which were defined in Section 6. The Gibbs 
sampler algorithm visits each node of a conditional independence graph and generates a value 
from the conditional distribution of the corresponding random variable given the current values 
of all its neighbours. Geman and Geman showed that, under similar conditions to those for 
simple stochastic substitution, the algorithm converges to a sample from the joint distribution. 
This follows regardless of the order in which nodes are visited, provided each node is visited 
sufficiently frequently; indeed the algorithm may be implemented by parallel processing. More 
usually it is implemented sequentially by visiting the nodes in a repeated predetermined 
sequence. 

Use of the simple Gibbs sampler for the graph of Figure 2 runs the same risks described above 
for stochastic substitution: y is a hyperparameter describing the variance of the (0)and y = O 
defines an absorbing state. However, the Gibbs sampler performs extremely satisfactorily in the 
upper section of the graph-i.e., for sampling from [A,, P , 5 1 y,Data]. The sampling algorithm 
proposed uses a mixture of Gibbs sampling and buffered stochastic substitution; the hyperparam- 
eter y takes the role of V in the description of stochastic substitution above, while U is the set 
(A,, p,  E ) .  Sampling of U is by G steps of the Gibbs sampler. The complete algorithm is as 
follows: 

Step i(a): Draw y* at random from yi-',. . . , ?IpB. 
Step i(b): Repeat G times: 

Assuming y = y", apply the Gibbs sampler to the top portion of the graph of Figure 
1, corresponding to the parameters A,, P ,  and 5 .  

Step i(c): Generate y ' given the current values of { (,) . 
Initially both B and G can be small, but should be increased on attainment of equilibrium and 
before drawing samples for analysis. 

The distributions that must be sampled at each step of the algorithm are those listed in Sec- 
tion 6. They are, for the most part, standard distributions (Gaussian, exponential, and gamma) 
and methods for sampling them are described in the comprehensive review of Ripley (1987). 

If the integrated baseline hazard function, A,, is not a main focus of interest, it is only 
necessary to generate its value at specific time points corresponding to the jumps in the Y+(t)  
and N + ( t ) ,  and this series of values is a cumulative sum of gamma variates. In the case of prior 
ignorance concerning A, (represented by c = 0), the sampled function is a step function with 
jumps occurring at the jump points in N + ( t ) .  The size of each jump is a unit exponential variate 
divided by the sum of relative risks for all individuals "at risk" at that time. This is a stochastic 
version of the Aalen estimator. 

Sampling from (6.1) is more difficult, but needs to be done less frequently. In the work 
described here, a rejection method was used, after first enclosing the curve in a histogram. 
Alternatively, the "ratio of uniforms" method (Ripley, 1987) could be used. 

The sampling algorithm is closely analogous to the EM algorithm described in Section 5 ,  but 
is stochastic rather than deterministic in nature. 
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Figure 3. Simplified conditional independence graph 

An alternative Monte Carlo method parallels the modified method for point estimation 
introduced at the end of Section 5. It exploits the analytical result that the posterior [ P  / 6,Data], 
integrated over A,, is proportional to (3.4), again with R , ( t ; P )  redefined as in (5.1). This 
allows us to directly sample [A,, P 1 6,Data] by first sampling [ P  f , Data] and then 
[A, 1 6 , f ,Data]. Often it will be appropriate to accept an asymptotic Gaussian approximation to 
this distribution. When c = 0, this corresponds to sampling from a Gaussian distribution 
approximately proportional to the partial likelihood. This method corresponds to Gibbs sampling 
in the simplified conditional independence graph of Figure 3, and the repeated step (b) of the 
algorithm is 

Step i(bl): 
Sample from [A, ,  P I f ,Data] by first sampling P from [ P  / f , Data], a distribution propor- 
tional to (or approximating) (3.4), and then sampling A, from [A, I P ,  f , Data] as before. 
Finally, sample 6 from [ f A,, P , y,Data]. 

As in the case of the deterministic algorithm for the point estimate, this modification speeds the 
convergence, so that less repetition of the step is necessary, but at the expense of extra 
computation at each step. 

The choice of starting value for the algorithm is not critical. It will often be thought desirable 
to compute the posterior mode as a point estimate and, if so, this provides a convenient start. 
Computation of the posterior mode is most conveniently achieved using one of the EM 
algorithms described in Section 5. 

8. An Example 

In this section the method is illustrated using the animal carcinogenesis data described by Mantel 
and Ciminera (1979) (Table 1). The experiment was litter-matched and used three rats from each 
of 50 litters, one rat being treated with putative carcinogen and the other two serving as controls. 
The time to tumour occurrence or censoring is recorded to the nearest week. The data set out in 
Table 1 have been slightly modified from those published by Mantel and Ciminera by randomly 
breaking tied uncensored failure times. Following the usual convention, ties of censored and 
uncensored times are treated as if failures precede censoring. In this example, there is a single 
covariate, z ,  with value 1 or 0 indicating exposure or nonexposure to carcinogen. 

As a reference, the conventional "Cox" analysis was carried out using the SAS PHGLM 
procedure. This yielded a maximum partial likelihood estimate of /3 of ,907, and an estimate of 
the asymptotic variance of .1008. 
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Table I 

Survival titnes ( weeks) of one exposed (E)  and two control rats 


( C  1. C2) in each of 50 litters 


Litter E C 1 C2 Litter E C 1 C2 

3 104.0" 104.0" 104.0'" 2 8 104.0:" 81.0 64.0 
4 77,0:" 97,0" 79,0:': 29 86.0 55.0 94.0:': 
5 89.0" 104.0" 104.0" 30 34.0 104.0" 54.0 
6 88.0 96.0 104.0": 3 1 76.0'" 87.0" 74.0" 

7 104.0 94.0:"7.0 32 102.8 73.0 83.9 
8 95.9 104,0:"04,0::' 3 3 101.9 104.0:': 80.0:" 

9 82.0* 77.0" 104.0": 34 79.9 104.0:" 73.0" 
10 70.0 104.0" 77.0" 3 5 45.0 79.0" 104.0:' 

11 88.9 91.0" 90.0" 3 6 94.0 104.0' 104.0" 
9 1 ,o:* 70.0" 92.0"12 37 104.0* 104.0" 104.0" 

13 39.0 45.0" 50.0 38 104.0" 101.0 94.0" 
14 102.9 69.0" 91.0" 3 9 76.0'" 84.0 78.0 
15 93.0" 104.0" 103.0" 40 80.0 80.9 76.0" 

95 ,o":16 85.0" 72.0" 104.0" 4 1 72.0 104.0'" 
17 104.0" 63.0* 104.0" 42 72.9 104.0" 66.0 
18 104.0" 104.0* 74.0" 43 92.0 104.0" 102.0 
19 81.0" 104.0* 69.0* 44 104.04: 98.0:': 73,0:% 

20 67.0 104.0" 68.0 45 55,0:% 104.0:i: 104.0:': 

2 1 104.0" 104.0" 104.0" 46 49.0:" 83.0': 77,0<: 
22 104.0" 104.0" 104.0" 47 89.0 104.0:': 104.0" 

23 104.0" 83,'O" 40.0 4 8 88.0:': 79.0:': 99.0:" 

24 87.0" 104.0": 104.0" 49 103.0 91 .04: 104.0"' 
25 104.0" 104.0" 104.0" 50 104.0" 104.0" 79.0 

"Right-cen~ored times. 
From Mantel and Ciminera (1979). with some modification: ties of ~~ncensored failure times have been broken at 

random. 

For the Bayesian analyses, vague priors were adopted throughout. The posterior mode of 
( p , y) was calculated using the EM algorithm of Section 5. and found to be (.919, ,502). Figure 
4 shows 2.000 pairs, (0,y) ,  sampled from the joint posterior distribution using the method 
described in Section 6. Starting from the posterior mode, 500 cycles of the recursion were 
carried out before sampling began, during which the buffer size, B, was gradually increased 
from 1 to 100. Thereafter the buffer size remained at 100. The repetition, G. of the Gibbs 
sampling loop was 10 throughout. Figures 5 and 6 show the estimated marginal posterior 
distributions of 0 and y, respectively, and Table 2 summarises these estimates. It may be seen 
that the inference concerning /3 depends only weakly on y.  

The choice of G = 5 was sufficient to exclude serious serial dependency in the sampled 
values of p ;  G = 10 was used for safety. Table 3 shows an analysis of runs above and below the 
median. The mean run length was 2,000j1.009 = 1.98, which does not differ significantly from 
the expected value (2). 

9. Discussion 

There are many ways in which the proposed approach could be extended. First, it is an 
extremely simple matter to extend the model by introducing further random effect. or frailty. 
terms, a possibility that has hitherto been excluded owing to the intractability of the resultant 
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Figure 4. 2,000 simulations of ( P , y) from the joint marginal posterior distribution. 

integrals. Since the conditional posterior distribations remain simple, there is no limitation 
to a single random effect with the proposed approach-the conditional independence graph of 
Figure 2 simply acquires new nodes and the sampling algorithm must be suitably extended. 

Second, other models could be adopted for the prior and posterior distributions of frailties. As 
a ,purely empirical model, Hougaard's proposal of the positive stable distributions has much to 
recommend it, and it is possible that it could be implemented using this approach. However, the 
rationale of Hougaard's model is such that it has convenient properties marginally-that is, 
integrating over frailties; it does not have particularly convenient properties conditionally, and 
this makes Gibbs sampling and related methods less attractive than in the gamma frailty model. 

If, on the other hand, a more explicitly biological model suggests itself, the flexibility of the 
method is such that this could be accommodated. The most important class of models is genetic 
models and frailty models with a genetic basis have been discussed by Mack, Langholz, and 
Thomas (1989), who also draw attention to the potential for Monte Carlo methods. A brief 
indication of the generalization of the proposed Monte Carlo method to such models follows. 

Consider a model in which inheritance of disease proneness is mediated by a single gene. 
There is a single locus and let us assume two possible alleles, a and A ,  so that the genotype is 
either aa, aA, or AA. Assuming no selective mating, the prior probabilities of these 
possibilities are, under Hardy-Weinberg equilibrium, (1 - q)2, 2q ( l  - q), and q2,  respec- 
tively, where q is the gene frequency of allele A .  Conditional upon the genotype, the frailty 
may be assumed to take the value 1, +,, or 6,.The "inherited relative risk" parameters 4 ,  and 
4, determine the penetrance and the mode of inheritance. With this model, the analysis of 
epidemiological studies of disease incidence in related individuals could be approached by Gibbs 
sampling, since it is straightforward to generate the genotype (and hence frailty) of each 
individual from the posterior distribution of genotype given (i) the event history of the 
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Figure 5.  The marginal posterior distribution of (3. 

individual, (ii) the genotypes of related individuals, and (iii) the gene frequency, q,  and relative 
risks, 6, and 6,. It would also be possible to incorporate genetic marker data using linkage 
models. However, a difficulty arises in that genetic models may give rise to absorbing states or 
groups of states so that some extension of the basic algorithm will be necessary. This is an 
important area for further wwork. 

The use of Gibbs sampling for some problems in descriptive epidemiology has been described 
by Clayton (technical report, University of Leicester, 1988). This work includes the analysis of 
cancer incidence maps using spatial priors for area-specific relative risks-an application of the 
Bayesian image analysis methods that motivated the work of Geman and Geman on Gibbs 
sampling. The cancer mapping problem is closely related to that reported here, as can be seen if 
geographical areas are regarded as rather large litters! 

A closely related problem is that of allowing for exposure measurement error in proportional 
hazards models. This problem can be treated in a very similar manner, with the unknown true 
exposures playing a role similar to the frailties in the present model. 

An attractive feature of Monte Carlo Bayes methods is the ease with which the suggestions of 
Rubin (1984) for model monitoring may be implemented, as follows. First, decide upon sonle 
diagnostic statistic, T say, and compute its value for the observed 'ata-7;,,,. Then, for each 
sample from the posterior distribution of parameters and hyperparameters, generate a simulated 
data set in accord with the model assumptions and the current parameter values and recalculate 
the statistic, T,", say. The adequacy of the model may be assessed by evaluating the ranking of 
To,, amongst the {T,"}. For example, the adequacy of the gamma frailty model (or of a 
particular genetic model for inheritance of frailty) might be assessed by examining the observed 
pattern of clustering of disease cases in families with that demonstrated by repeatedly simulated 
data sets. 
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Figure 6. The marginal posterior distribution of y 

Table 2 
Summary of the distribution of 2,000 samples of (6, y )  

from the joint posterior distribution 

Mean 

Variance 


Quantiles: 

.05 

.25 

.50 

.75 

.95 


Model monitoring by repeated generation of data parallels the bootstrap very closely and, for 
censored survival data analyses, similar problems are encountered. In particular, it seems 
necessary to model the censoring process in order to generate the "bootstrap" data sets. For this 
reason, this idea has not been pursued here and it awaits further work. 

While the proposed method is computationally intensive, this fact has decreasing relevance. 
As originally described by Geman and Geman, the Gibbs sampling algorithm is essentially a 
parallel one. For problems involving parallel processing, very powerful computing equipment is 
now available at very modest prices. For example, Transputer arrays are very suitable for 
implementing methods such as these. On the other hand, the time necessary to implement such a 
method is quite short, since a program to simulate a rather complex model may be built using 
only simple building bricks. 
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Table 3 
Runs above and below the median in 2,000 consecutive samples of P 

Above + Below 

Run length Above median Below median Obs ( E ~ P )a 

Total 

'The expected frequencies of runs of specified lengths are those expected conditional upon observing 1,009 runs in 
total. The expected total number of runs is that expected in a sequence of 2,000 observations. 

I am grateful to Professor Duncan Thomas, Department of Preventive Medicine, University of 
Southern California, for helpful comments and discussions, in particular for drawing my 
attention to the potential application of the method in genetic epidemiology. 
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